
FIRST MIDTERM

MATH 100B, UCSD, WINTER 17

You have 50 minutes.

There are 5 problems, and the total number of

points is 70. Show all your work. Please make

your work as clear and easy to follow as possible.

Name:

Signature:

Problem Points Score

1 15

2 10

3 15

4 10

5 20

6 10

7 10

Total 70
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1. (15pts) Give the definition of a subring.

A subring S of a ring R is a subset which is a ring with the inherited
rules of addition and multiplication.

(ii) Give the definition of a ring homomorphism.

A ring homomorphism is a function φ : R −→ S between two rings such
that

φ(x+ y) = φ(x) + φ(y) φ(xy) = φ(x)φ(y) φ(1) = 1.

(iii) Give the definition of a maximal ideal.

An ideal I in a ring R is maximal if whenever I ⊂ J is an ideal in R
then either J = I or J = R.
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2. (10pts) (i) Prove that the kernel of a ring homomorphism φ : R −→ S
is an ideal, not equal to R.

Let I = Kerφ. Then 0 ∈ I as φ(0) = 0; in particular I is non-empty.
If a and b ∈ I then φ(a) = 0 and φ(b) = 0. Therefore φ(a + b) =
φ(a) + φ(b) = 0 + 0 = 0. Thus a + b ∈ I and so I is closed under
addition. If a ∈ I and r ∈ R then φ(ra) = φ(r)φ(a) = φ(r)0 = 0. Thus
ra ∈ I and so I is an ideal.
φ(1) = 1 6= 0 so that 1 /∈ I and I 6= R.

(ii) Let I ⊂ R be an ideal of a ring R such that I 6= R. Show that there
is a (natural) well-defined multiplication on the set of left cosets R/I.

Suppose that x and y are two left cosets. Then x = a+ I and y = b+ I
and we try to define xy = ab + I. To check that this makes sense,
suppose that x = a′ + I and y = b′ + I. Then we may find i and j ∈ J
such that a′ = a+ i and b′ = b+ j. It follows that

a′b′ = (a+ i)(b+ j)

= ab+ aj + ib+ ij

= ab+ k.

Note that aj ∈ I as j ∈ I, ib ∈ I as i ∈ I and ij ∈ I as i and
j ∈ I. Thus k ∈ I so that a′b′ + I = ab + I and the multiplication is
well-defined.
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3. (15pts) Let I and J be two ideals in a ring R. Show that
(i) I ∩ J is an ideal.

0 ∈ I and 0 ∈ J so that 0 ∈ I ∩ J . Thus I ∩ J is non-empty. Suppose
that a and b ∈ I ∩ J . Then a and b ∈ I and a and b ∈ J . It follows
that a+ b ∈ I and a+ b ∈ J so that a+ b ∈ I ∩ J . Thus I ∩ J is closed
under addition. Finally suppose that r ∈ R and a ∈ I ∩ J . Then a ∈ I
and a ∈ J . Thus ra ∈ I and ra ∈ J . It follows that ra ∈ I ∩ J so that
I ∩ J is an ideal.

(ii) I + J is an ideal.

0 = 0+0 ∈ I+J so that I+J is non-empty. If x and y ∈ I+J then we
can find a and c ∈ I and b and d ∈ J such that x = a+b and y = c+d.
Note that a + c ∈ I and b + d ∈ J . Then x + y = (a + b) + (c + d) =
(a+ c)+ (b+ d) ∈ I +J . Thus I +J is closed under addition. Suppose
that x ∈ I + J and r ∈ R. Then x = a + b, where a ∈ I and b ∈ J .
Note that ra ∈ I and rb ∈ J . We have rx = r(a+ b) = ra+ rb ∈ I+J .
Thus I + J is an ideal.

(iii) Give an example to show that I ∪ J is not necessarily an ideal.

Let R = Z, let I = 〈2〉 and J = 〈3〉. Then I ∪ J is the set of integers
divisible by either 2 or 3. Therefore 2 and 3 belong to the union but
not 5 = 2 + 3. Thus I ∪ J is not closed under addition.
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4. (10pts) Let R be a division ring and let φ : R −→ S be a ring
homomorphism. Show that φ is injective.

Let I = Kerφ. Then I is an ideal. φ(1) = 1 so that 1 /∈ I.
Suppose that a ∈ I and a 6= 0. As R is a division ring, a is invertible
and so we may find b ∈ R such that ba = 1. As I is an ideal, it follows
that ba ∈ I so that 1 ∈ I, a contradiction.
It follows that I = {0}. As φ is a group homomorphism with trivial
kernel, it follows that φ is injective.
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5. (20pts) Let X be a set, let R be a ring and let F be the ring of all
functions from X to R with pointwise addition and multiplication.
(i) Show that f ∈ F is invertible if and only if f(x) ∈ R is invertible,
for all x ∈ X.

Suppose that f is invertible, with inverse g, so that fg = gf = 1. If
x ∈ X then

1 = (fg)(x) = f(x)g(x) and 1 = (gf)(x) = g(x)f(x)

so that g(x) is the inverse of f(x). In particular f(x) is invertible.
Now suppose that f(x) is invertible, for all x ∈ X. Define a function
g : X −→ R by sending x to the inverse of f(x). In this case

(fg)(x) = f(x)g(x) = 1 and (gf)(x) = g(x)f(x) = 1.

Thus fg = gf = 1 and so g is the inverse of f .

(ii) Let Y be a subset of X and let G be the ring of all functions from Y
to R. Show that the map φ : F −→ G which sends a function f : X −→
R to its restriction to Y is a ring homomorphism.

If f and g ∈ F then

φ(f + g) = (f + g)|Y = f |Y + g|Y = φ(f) + φ(g) and

φ(fg) = (fg)|Y = (f |Y )(g|Y ) = φ(f)φ(g).

On the other hand, it is clear that the constant function 1, restricts to
the constant function 1. Thus φ(1) = 1 and φ is a ring homomorphism.
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(iii) If X = [0, 1], R = R and I ⊂ F is the set of functions vanishing
at 1/2 then show that I is a maximal ideal.

If Y = {1/2} and φ is the ring homomorphism above then the kernel
of φ is I. G is a copy of R, since a function on Y is determined by its
value at 1/2. By the Isomorphism Theorem, F/I ≃ R. But an ideal
is maximal if and only if the quotient ring is a field. Therefore I is
maximal.

(iv) If X = [0, 1], R = R and J ⊂ F is the set of functions vanishing
at both 1/3 and 2/3 then show that I is not a prime ideal.

Let

f(x) =

{

0 if x = 1/3

1 otherwise
g(x) =

{

0 if x = 2/3

1 otherwise.

Then f and g /∈ J but fg ∈ J . Thus J is not prime.
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Bonus Challenge Problems

6. (10pts) Let R be the ring of all 2 × 2 matrices with entries in Zp,
p a prime. Let G be the subset of all 2 × 2 matrices with non-zero
determinant. How many elements does G have?

We just want to count the number of invertible 2 × 2 matrices with
entries in the field Zp. Now a square matrix is invertible if and only if
its rows are a basis.
So we just want to count the number of ordered bases of the vector
space Z2

p. We have to pick two independent vectors. We pick them one
at a time. We are free to pick any vector for the first vector, except
zero. So there are p2 − 1 choices of the first vector. For the second
vector we just have to make sure we don’t pick a multiple of the first
vector. There are p different multiples of the first vector, so there are
p2 − p choices for the second vector.
Thus there are (p2 − 1)(p2 − p) elements of G.
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7. (10pts) Construct a field with 49 elements.

We just mimic the construction in the book and the lecture notes. Let
I be the set of Gaussian integers R of the form a+ bi where both a and
b are divisible by 7.
It is clear that I is an ideal and I 6= R. The quotient ring R/I has 49
elements, since there are seven possible residues for both the real and
imaginary parts. Note that R/I is a field if and only if I is maximal.
We first follow the book. Suppose that I ⊂ J is an ideal, not equal to
I. Then we can find a+ bi ∈ J but not in I. It follows that 7 does not
divide at least one of a or b.
Now the possible congruences of a square modulo 7 are 0, 1 = 12 = 62,
4 = 22 = 52 and 2 = 32 = 42. It follows that if 7 divides an integer of
the form x2 + y2 then 7 must divide x and y.
Therefore 7 does not divide c = a2 + b2. As

c = (a+ bi)(a− bi),

it follows that c belongs to J but not to I. As c is coprime to 7 we
may find x and y such that

1 = xc+ 7y.

As 7 ∈ I ⊂ J , it follows that 1 ∈ J . Thus J = R and so I is maximal.
Instead we can follow the lecture notes. We sketch the details. As
R/I is finite it is field if and only if it is an integral domain, R/I is an
integral domain if and only if I is prime.
Suppose that (a+ bi)(c+ di) ∈ I but a+ bi /∈ I. As

(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i,

7 divides
ac− bd and ad+ bc.

Adding and subtracting these together we get that 7 divides

(a+ b)c− (b− a)d and (a+ b)d+ (b− a)c,

7 divides

(2a+ b)c− (2b− a)d and (2a+ b)d+ (2b− a)c,

and 7 divides

(a+ 2b)c− (b− 2a)d and (a+ 2b)d+ (b− 2a)c.

By assumption 7 does not divide both a and b. In this case 7 divides
a but not b, or vice-versa, of the same is true replacing the pair (a, b)
by (a+ b, b− a), (2a+ b, 2b− a), (a+ 2b, b− 2a). Now finish as in the
lecture notes.
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