FIRST MIDTERM MATH 100B, UCSD, WINTER 17

You have 50 minutes.

There are 5 problems, and the total number of points is 70. Show all your work. *Please make your work as clear and easy to follow as possible.*

Name:_____

Signature:_____

Problem	Points	Score
1	15	
2	10	
3	15	
4	10	
5	20	
6	10	
7	10	
Total	70	

1. (15pts) Give the definition of a subring.

A subring S of a ring R is a subset which is a ring with the inherited rules of addition and multiplication.

(ii) Give the definition of a ring homomorphism.

A ring homomorphism is a function $\phi\colon R\longrightarrow S$ between two rings such that

 $\phi(x+y) = \phi(x) + \phi(y) \qquad \phi(xy) = \phi(x)\phi(y) \qquad \phi(1) = 1.$

(iii) Give the definition of a maximal ideal.

An ideal I in a ring R is maximal if whenever $I \subset J$ is an ideal in R then either J = I or J = R.

2. (10pts) (i) Prove that the kernel of a ring homomorphism $\phi: R \longrightarrow S$ is an ideal, not equal to R.

Let $I = \text{Ker }\phi$. Then $0 \in I$ as $\phi(0) = 0$; in particular I is non-empty. If a and $b \in I$ then $\phi(a) = 0$ and $\phi(b) = 0$. Therefore $\phi(a + b) = \phi(a) + \phi(b) = 0 + 0 = 0$. Thus $a + b \in I$ and so I is closed under addition. If $a \in I$ and $r \in R$ then $\phi(ra) = \phi(r)\phi(a) = \phi(r)0 = 0$. Thus $ra \in I$ and so I is an ideal.

 $\phi(1) = 1 \neq 0$ so that $1 \notin I$ and $I \neq R$.

(ii) Let $I \subset R$ be an ideal of a ring R such that $I \neq R$. Show that there is a (natural) well-defined multiplication on the set of left cosets R/I.

Suppose that x and y are two left cosets. Then x = a + I and y = b + Iand we try to define xy = ab + I. To check that this makes sense, suppose that x = a' + I and y = b' + I. Then we may find i and $j \in J$ such that a' = a + i and b' = b + j. It follows that

$$a'b' = (a+i)(b+j)$$

= $ab + aj + ib + ij$
= $ab + k$.

Note that $aj \in I$ as $j \in I$, $ib \in I$ as $i \in I$ and $ij \in I$ as i and $j \in I$. Thus $k \in I$ so that a'b' + I = ab + I and the multiplication is well-defined.

3. (15pts) Let I and J be two ideals in a ring R. Show that (i) $I \cap J$ is an ideal.

 $0 \in I$ and $0 \in J$ so that $0 \in I \cap J$. Thus $I \cap J$ is non-empty. Suppose that a and $b \in I \cap J$. Then a and $b \in I$ and a and $b \in J$. It follows that $a + b \in I$ and $a + b \in J$ so that $a + b \in I \cap J$. Thus $I \cap J$ is closed under addition. Finally suppose that $r \in R$ and $a \in I \cap J$. Then $a \in I$ and $a \in J$. Thus $ra \in I$ and $ra \in J$. It follows that $ra \in I \cap J$ so that $I \cap J$ is an ideal.

(ii) I + J is an ideal.

 $0 = 0 + 0 \in I + J$ so that I + J is non-empty. If x and $y \in I + J$ then we can find a and $c \in I$ and b and $d \in J$ such that x = a + b and y = c + d. Note that $a + c \in I$ and $b + d \in J$. Then $x + y = (a + b) + (c + d) = (a + c) + (b + d) \in I + J$. Thus I + J is closed under addition. Suppose that $x \in I + J$ and $r \in R$. Then x = a + b, where $a \in I$ and $b \in J$. Note that $ra \in I$ and $rb \in J$. We have $rx = r(a + b) = ra + rb \in I + J$. Thus I + J is an ideal.

(iii) Give an example to show that $I \cup J$ is not necessarily an ideal.

Let $R = \mathbb{Z}$, let $I = \langle 2 \rangle$ and $J = \langle 3 \rangle$. Then $I \cup J$ is the set of integers divisible by either 2 or 3. Therefore 2 and 3 belong to the union but not 5 = 2 + 3. Thus $I \cup J$ is not closed under addition.

4. (10pts) Let R be a division ring and let $\phi: R \longrightarrow S$ be a ring homomorphism. Show that ϕ is injective.

Let $I = \text{Ker } \phi$. Then I is an ideal. $\phi(1) = 1$ so that $1 \notin I$.

Suppose that $a \in I$ and $a \neq 0$. As R is a division ring, a is invertible and so we may find $b \in R$ such that ba = 1. As I is an ideal, it follows that $ba \in I$ so that $1 \in I$, a contradiction.

It follows that $I = \{0\}$. As ϕ is a group homomorphism with trivial kernel, it follows that ϕ is injective.

5. (20pts) Let X be a set, let R be a ring and let F be the ring of all functions from X to R with pointwise addition and multiplication. (i) Show that $f \in F$ is invertible if and only if $f(x) \in R$ is invertible, for all $x \in X$.

Suppose that f is invertible, with inverse g, so that fg = gf = 1. If $x \in X$ then

$$1 = (fg)(x) = f(x)g(x)$$
 and $1 = (gf)(x) = g(x)f(x)$

so that g(x) is the inverse of f(x). In particular f(x) is invertible. Now suppose that f(x) is invertible, for all $x \in X$. Define a function $g: X \longrightarrow R$ by sending x to the inverse of f(x). In this case

$$(fg)(x) = f(x)g(x) = 1$$
 and $(gf)(x) = g(x)f(x) = 1$.

Thus fg = gf = 1 and so g is the inverse of f.

(ii) Let Y be a subset of X and let G be the ring of all functions from Y to R. Show that the map $\phi: F \longrightarrow G$ which sends a function $f: X \longrightarrow R$ to its restriction to Y is a ring homomorphism.

If f and $g \in F$ then

$$\phi(f+g) = (f+g)|_Y = f|_Y + g|_Y = \phi(f) + \phi(g) \quad \text{and} \\ \phi(fg) = (fg)|_Y = (f|_Y)(g|_Y) = \phi(f)\phi(g).$$

On the other hand, it is clear that the constant function 1, restricts to the constant function 1. Thus $\phi(1) = 1$ and ϕ is a ring homomorphism.

(iii) If X = [0, 1], $R = \mathbb{R}$ and $I \subset F$ is the set of functions vanishing at 1/2 then show that I is a maximal ideal.

If $Y = \{1/2\}$ and ϕ is the ring homomorphism above then the kernel of ϕ is I. G is a copy of \mathbb{R} , since a function on Y is determined by its value at 1/2. By the Isomorphism Theorem, $F/I \simeq \mathbb{R}$. But an ideal is maximal if and only if the quotient ring is a field. Therefore I is maximal.

(iv) If X = [0, 1], $R = \mathbb{R}$ and $J \subset F$ is the set of functions vanishing at both 1/3 and 2/3 then show that I is not a prime ideal.

Let

$$f(x) = \begin{cases} 0 & \text{if } x = 1/3 \\ 1 & \text{otherwise} \end{cases} \quad g(x) = \begin{cases} 0 & \text{if } x = 2/3 \\ 1 & \text{otherwise.} \end{cases}$$

Then f and $g \notin J$ but $fg \in J$. Thus J is not prime.

Bonus Challenge Problems

6. (10pts) Let R be the ring of all 2×2 matrices with entries in \mathbb{Z}_p , p a prime. Let G be the subset of all 2×2 matrices with non-zero determinant. How many elements does G have?

We just want to count the number of invertible 2×2 matrices with entries in the field \mathbb{Z}_p . Now a square matrix is invertible if and only if its rows are a basis.

So we just want to count the number of ordered bases of the vector space \mathbb{Z}_p^2 . We have to pick two independent vectors. We pick them one at a time. We are free to pick any vector for the first vector, except zero. So there are $p^2 - 1$ choices of the first vector. For the second vector we just have to make sure we don't pick a multiple of the first vector. There are p different multiples of the first vector, so there are $p^2 - p$ choices for the second vector.

Thus there are $(p^2 - 1)(p^2 - p)$ elements of G.

7. (10pts) Construct a field with 49 elements.

We just mimic the construction in the book and the lecture notes. Let I be the set of Gaussian integers R of the form a + bi where both a and b are divisible by 7.

It is clear that I is an ideal and $I \neq R$. The quotient ring R/I has 49 elements, since there are seven possible residues for both the real and imaginary parts. Note that R/I is a field if and only if I is maximal.

We first follow the book. Suppose that $I \subset J$ is an ideal, not equal to I. Then we can find $a + bi \in J$ but not in I. It follows that 7 does not divide at least one of a or b.

Now the possible congruences of a square modulo 7 are 0, $1 = 1^2 = 6^2$, $4 = 2^2 = 5^2$ and $2 = 3^2 = 4^2$. It follows that if 7 divides an integer of the form $x^2 + y^2$ then 7 must divide x and y. Therefore 7 does not divide $c = a^2 + b^2$. As

$$c = (a + bi)(a - bi),$$

it follows that c belongs to J but not to I. As c is coprime to 7 we may find x and y such that

$$1 = xc + 7y.$$

As $7 \in I \subset J$, it follows that $1 \in J$. Thus J = R and so I is maximal. Instead we can follow the lecture notes. We sketch the details. As R/I is finite it is field if and only if it is an integral domain, R/I is an integral domain if and only if I is prime.

Suppose that $(a + bi)(c + di) \in I$ but $a + bi \notin I$. As

$$(a+bi)(c+di) = (ac-bd) + (ad+bc)i,$$

7 divides

$$ac - bd$$
 and $ad + bc$

Adding and subtracting these together we get that 7 divides

$$(a+b)c - (b-a)d$$
 and $(a+b)d + (b-a)c$,

7 divides

(2a+b)c - (2b-a)d and (2a+b)d + (2b-a)c,

and 7 divides

$$(a+2b)c - (b-2a)d$$
 and $(a+2b)d + (b-2a)d$

By assumption 7 does not divide both a and b. In this case 7 divides a but not b, or vice-versa, of the same is true replacing the pair (a, b) by (a + b, b - a), (2a + b, 2b - a), (a + 2b, b - 2a). Now finish as in the lecture notes.