FIRST MIDTERM MATH 100B, UCSD, WINTER 17

You have 50 minutes.

There are 5 problems, and the total number of points is 70 . Show all your work. Please make your work as clear and easy to follow as possible.

Name: \qquad
Signature: \qquad

Problem	Points	Score
1	15	
2	10	
3	15	
4	10	
5	20	
6	10	
7	10	
Total	70	

1. (15pts) Give the definition of a subring.

A subring S of a ring R is a subset which is a ring with the inherited rules of addition and multiplication.
(ii) Give the definition of a ring homomorphism.

A ring homomorphism is a function $\phi: R \longrightarrow S$ between two rings such that

$$
\phi(x+y)=\phi(x)+\phi(y) \quad \phi(x y)=\phi(x) \phi(y) \quad \phi(1)=1 .
$$

(iii) Give the definition of a maximal ideal.

An ideal I in a ring R is maximal if whenever $I \subset J$ is an ideal in R then either $J=I$ or $J=R$.
2. (10pts) (i) Prove that the kernel of a ring homomorphism $\phi: R \longrightarrow S$ is an ideal, not equal to R.

Let $I=\operatorname{Ker} \phi$. Then $0 \in I$ as $\phi(0)=0$; in particular I is non-empty. If a and $b \in I$ then $\phi(a)=0$ and $\phi(b)=0$. Therefore $\phi(a+b)=$ $\phi(a)+\phi(b)=0+0=0$. Thus $a+b \in I$ and so I is closed under addition. If $a \in I$ and $r \in R$ then $\phi(r a)=\phi(r) \phi(a)=\phi(r) 0=0$. Thus $r a \in I$ and so I is an ideal. $\phi(1)=1 \neq 0$ so that $1 \notin I$ and $I \neq R$.
(ii) Let $I \subset R$ be an ideal of a ring R such that $I \neq R$. Show that there is a (natural) well-defined multiplication on the set of left cosets R / I.

Suppose that x and y are two left cosets. Then $x=a+I$ and $y=b+I$ and we try to define $x y=a b+I$. To check that this makes sense, suppose that $x=a^{\prime}+I$ and $y=b^{\prime}+I$. Then we may find i and $j \in J$ such that $a^{\prime}=a+i$ and $b^{\prime}=b+j$. It follows that

$$
\begin{aligned}
a^{\prime} b^{\prime} & =(a+i)(b+j) \\
& =a b+a j+i b+i j \\
& =a b+k .
\end{aligned}
$$

Note that $a j \in I$ as $j \in I, i b \in I$ as $i \in I$ and $i j \in I$ as i and $j \in I$. Thus $k \in I$ so that $a^{\prime} b^{\prime}+I=a b+I$ and the multiplication is well-defined.
3. (15pts) Let I and J be two ideals in a ring R. Show that
(i) $I \cap J$ is an ideal.
$0 \in I$ and $0 \in J$ so that $0 \in I \cap J$. Thus $I \cap J$ is non-empty. Suppose that a and $b \in I \cap J$. Then a and $b \in I$ and a and $b \in J$. It follows that $a+b \in I$ and $a+b \in J$ so that $a+b \in I \cap J$. Thus $I \cap J$ is closed under addition. Finally suppose that $r \in R$ and $a \in I \cap J$. Then $a \in I$ and $a \in J$. Thus $r a \in I$ and $r a \in J$. It follows that $r a \in I \cap J$ so that $I \cap J$ is an ideal.
(ii) $I+J$ is an ideal.
$0=0+0 \in I+J$ so that $I+J$ is non-empty. If x and $y \in I+J$ then we can find a and $c \in I$ and b and $d \in J$ such that $x=a+b$ and $y=c+d$. Note that $a+c \in I$ and $b+d \in J$. Then $x+y=(a+b)+(c+d)=$ $(a+c)+(b+d) \in I+J$. Thus $I+J$ is closed under addition. Suppose that $x \in I+J$ and $r \in R$. Then $x=a+b$, where $a \in I$ and $b \in J$. Note that $r a \in I$ and $r b \in J$. We have $r x=r(a+b)=r a+r b \in I+J$. Thus $I+J$ is an ideal.
(iii) Give an example to show that $I \cup J$ is not necessarily an ideal.

Let $R=\mathbb{Z}$, let $I=\langle 2\rangle$ and $J=\langle 3\rangle$. Then $I \cup J$ is the set of integers divisible by either 2 or 3 . Therefore 2 and 3 belong to the union but not $5=2+3$. Thus $I \cup J$ is not closed under addition.
4. (10pts) Let R be a division ring and let $\phi: R \longrightarrow S$ be a ring homomorphism. Show that ϕ is injective.

Let $I=\operatorname{Ker} \phi$. Then I is an ideal. $\phi(1)=1$ so that $1 \notin I$.
Suppose that $a \in I$ and $a \neq 0$. As R is a division ring, a is invertible and so we may find $b \in R$ such that $b a=1$. As I is an ideal, it follows that $b a \in I$ so that $1 \in I$, a contradiction.
It follows that $I=\{0\}$. As ϕ is a group homomorphism with trivial kernel, it follows that ϕ is injective.
5. (20pts) Let X be a set, let R be a ring and let F be the ring of all functions from X to R with pointwise addition and multiplication.
(i) Show that $f \in F$ is invertible if and only if $f(x) \in R$ is invertible, for all $x \in X$.

Suppose that f is invertible, with inverse g, so that $f g=g f=1$. If $x \in X$ then

$$
1=(f g)(x)=f(x) g(x) \quad \text { and } \quad 1=(g f)(x)=g(x) f(x)
$$

so that $g(x)$ is the inverse of $f(x)$. In particular $f(x)$ is invertible. Now suppose that $f(x)$ is invertible, for all $x \in X$. Define a function $g: X \longrightarrow R$ by sending x to the inverse of $f(x)$. In this case

$$
(f g)(x)=f(x) g(x)=1 \quad \text { and } \quad(g f)(x)=g(x) f(x)=1
$$

Thus $f g=g f=1$ and so g is the inverse of f.
(ii) Let Y be a subset of X and let G be the ring of all functions from Y to R. Show that the map $\phi: F \longrightarrow G$ which sends a function $f: X \longrightarrow$ R to its restriction to Y is a ring homomorphism.

If f and $g \in F$ then

$$
\begin{aligned}
\phi(f+g) & =\left.(f+g)\right|_{Y}=\left.f\right|_{Y}+\left.g\right|_{Y}=\phi(f)+\phi(g) \quad \text { and } \\
\phi(f g) & =\left.(f g)\right|_{Y}=\left(\left.f\right|_{Y}\right)\left(\left.g\right|_{Y}\right)=\phi(f) \phi(g) .
\end{aligned}
$$

On the other hand, it is clear that the constant function 1, restricts to the constant function 1 . Thus $\phi(1)=1$ and ϕ is a ring homomorphism.
(iii) If $X=[0,1], R=\mathbb{R}$ and $I \subset F$ is the set of functions vanishing at $1 / 2$ then show that I is a maximal ideal.

If $Y=\{1 / 2\}$ and ϕ is the ring homomorphism above then the kernel of ϕ is $I . G$ is a copy of \mathbb{R}, since a function on Y is determined by its value at $1 / 2$. By the Isomorphism Theorem, $F / I \simeq \mathbb{R}$. But an ideal is maximal if and only if the quotient ring is a field. Therefore I is maximal.
(iv) If $X=[0,1], R=\mathbb{R}$ and $J \subset F$ is the set of functions vanishing at both $1 / 3$ and $2 / 3$ then show that I is not a prime ideal.

Let

$$
f(x)=\left\{\begin{array}{ll}
0 & \text { if } x=1 / 3 \\
1 & \text { otherwise }
\end{array} \quad g(x)= \begin{cases}0 & \text { if } x=2 / 3 \\
1 & \text { otherwise }\end{cases}\right.
$$

Then f and $g \notin J$ but $f g \in J$. Thus J is not prime.

Bonus Challenge Problems

6. (10pts) Let R be the ring of all 2×2 matrices with entries in \mathbb{Z}_{p}, p a prime. Let G be the subset of all 2×2 matrices with non-zero determinant. How many elements does G have?

We just want to count the number of invertible 2×2 matrices with entries in the field \mathbb{Z}_{p}. Now a square matrix is invertible if and only if its rows are a basis.
So we just want to count the number of ordered bases of the vector space \mathbb{Z}_{p}^{2}. We have to pick two independent vectors. We pick them one at a time. We are free to pick any vector for the first vector, except zero. So there are $p^{2}-1$ choices of the first vector. For the second vector we just have to make sure we don't pick a multiple of the first vector. There are p different multiples of the first vector, so there are $p^{2}-p$ choices for the second vector.
Thus there are $\left(p^{2}-1\right)\left(p^{2}-p\right)$ elements of G.
7. (10pts) Construct a field with 49 elements.

We just mimic the construction in the book and the lecture notes. Let I be the set of Gaussian integers R of the form $a+b i$ where both a and b are divisible by 7 .
It is clear that I is an ideal and $I \neq R$. The quotient ring R / I has 49 elements, since there are seven possible residues for both the real and imaginary parts. Note that R / I is a field if and only if I is maximal.
We first follow the book. Suppose that $I \subset J$ is an ideal, not equal to I. Then we can find $a+b i \in J$ but not in I. It follows that 7 does not divide at least one of a or b.
Now the possible congruences of a square modulo 7 are $0,1=1^{2}=6^{2}$, $4=2^{2}=5^{2}$ and $2=3^{2}=4^{2}$. It follows that if 7 divides an integer of the form $x^{2}+y^{2}$ then 7 must divide x and y.
Therefore 7 does not divide $c=a^{2}+b^{2}$. As

$$
c=(a+b i)(a-b i),
$$

it follows that c belongs to J but not to I. As c is coprime to 7 we may find x and y such that

$$
1=x c+7 y
$$

As $7 \in I \subset J$, it follows that $1 \in J$. Thus $J=R$ and so I is maximal. Instead we can follow the lecture notes. We sketch the details. As R / I is finite it is field if and only if it is an integral domain, R / I is an integral domain if and only if I is prime.
Suppose that $(a+b i)(c+d i) \in I$ but $a+b i \notin I$. As

$$
(a+b i)(c+d i)=(a c-b d)+(a d+b c) i
$$

7 divides

$$
a c-b d \quad \text { and } \quad a d+b c .
$$

Adding and subtracting these together we get that 7 divides

$$
(a+b) c-(b-a) d \quad \text { and } \quad(a+b) d+(b-a) c
$$

7 divides

$$
(2 a+b) c-(2 b-a) d \quad \text { and } \quad(2 a+b) d+(2 b-a) c,
$$

and 7 divides

$$
(a+2 b) c-(b-2 a) d \quad \text { and } \quad(a+2 b) d+(b-2 a) c .
$$

By assumption 7 does not divide both a and b. In this case 7 divides a but not b, or vice-versa, of the same is true replacing the pair (a, b) by $(a+b, b-a),(2 a+b, 2 b-a),(a+2 b, b-2 a)$. Now finish as in the lecture notes.

