FIRST MIDTERM
MATH 100B, UCSD, WINTER 17

You have 50 minutes.

There are 5 problems, and the total number of points is 70. Show all your work. *Please make your work as clear and easy to follow as possible.*

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

Name:__

Signature:______________________________________
1. (15pts) *Give the definition of a subring.*

A subring S of a ring R is a subset which is a ring with the inherited rules of addition and multiplication.

(ii) *Give the definition of a ring homomorphism.*

A ring homomorphism is a function $\phi: R \rightarrow S$ between two rings such that

$$
\phi(x + y) = \phi(x) + \phi(y) \quad \phi(xy) = \phi(x)\phi(y) \quad \phi(1) = 1.
$$

(iii) *Give the definition of a maximal ideal.*

An ideal I in a ring R is maximal if whenever $I \subset J$ is an ideal in R then either $J = I$ or $J = R$.
2. (10pts) (i) Prove that the kernel of a ring homomorphism \(\phi: R \rightarrow S \) is an ideal, not equal to \(R \).

Let \(I = \text{Ker} \phi \). Then \(0 \in I \) as \(\phi(0) = 0 \); in particular \(I \) is non-empty. If \(a \) and \(b \in I \) then \(\phi(a) = 0 \) and \(\phi(b) = 0 \). Therefore \(\phi(a + b) = \phi(a) + \phi(b) = 0 + 0 = 0 \). Thus \(a + b \in I \) and so \(I \) is closed under addition. If \(a \in I \) and \(r \in R \) then \(\phi(ra) = \phi(r)\phi(a) = \phi(r)0 = 0 \). Thus \(ra \in I \) and so \(I \) is an ideal.
\(\phi(1) = 1 \neq 0 \) so that \(1 \notin I \) and \(I \neq R \).

(ii) Let \(I \subset R \) be an ideal of a ring \(R \) such that \(I \neq R \). Show that there is a (natural) well-defined multiplication on the set of left cosets \(R/I \).

Suppose that \(x \) and \(y \) are two left cosets. Then \(x = a + I \) and \(y = b + I \) and we try to define \(xy = ab + I \). To check that this makes sense, suppose that \(x = a' + I \) and \(y = b' + I \). Then we may find \(i \) and \(j \in I \) such that \(a' = a + i \) and \(b' = b + j \). It follows that
\[
 a'b' = (a + i)(b + j)
 = ab + aj + ib + ij
 = ab + k.
\]
Note that \(aj \in I \) as \(j \in I \), \(ib \in I \) as \(i \in I \) and \(ij \in I \) as \(i \) and \(j \in I \). Thus \(k \in I \) so that \(a'b' + I = ab + I \) and the multiplication is well-defined.
3. (15pts) Let I and J be two ideals in a ring R. Show that
(i) $I \cap J$ is an ideal.

$0 \in I$ and $0 \in J$ so that $0 \in I \cap J$. Thus $I \cap J$ is non-empty. Suppose that a and $b \in I \cap J$. Then a and $b \in I$ and a and $b \in J$. It follows that $a + b \in I$ and $a + b \in J$ so that $a + b \in I \cap J$. Thus $I \cap J$ is closed under addition. Finally suppose that $r \in R$ and $a \in I \cap J$. Then $a \in I$ and $a \in J$. Thus $ra \in I$ and $ra \in J$. It follows that $ra \in I \cap J$ so that $I \cap J$ is an ideal.

(ii) $I + J$ is an ideal.

$0 = 0 \in I + J$ so that $I + J$ is non-empty. If x and $y \in I + J$ then we can find a and $c \in I$ and b and $d \in J$ such that $x = a + b$ and $y = c + d$. Note that $a + c \in I$ and $b + d \in J$. Then $x + y = (a + b) + (c + d) = (a + c) + (b + d) \in I + J$. Thus $I + J$ is closed under addition. Suppose that $x \in I + J$ and $r \in R$. Then $x = a + b$, where $a \in I$ and $b \in J$. Note that $ra \in I$ and $rb \in J$. We have $rx = r(a + b) = ra + rb \in I + J$. Thus $I + J$ is an ideal.

(iii) Give an example to show that $I \cup J$ is not necessarily an ideal.

Let $R = \mathbb{Z}$, let $I = \langle 2 \rangle$ and $J = \langle 3 \rangle$. Then $I \cup J$ is the set of integers divisible by either 2 or 3. Therefore 2 and 3 belong to the union but not $5 = 2 + 3$. Thus $I \cup J$ is not closed under addition.
4. (10pts) Let R be a division ring and let $\phi: R \to S$ be a ring homomorphism. Show that ϕ is injective.

Let $I = \text{Ker} \phi$. Then I is an ideal. $\phi(1) = 1$ so that $1 \notin I$.
Suppose that $a \in I$ and $a \neq 0$. As R is a division ring, a is invertible and so we may find $b \in R$ such that $ba = 1$. As I is an ideal, it follows that $ba \in I$ so that $1 \in I$, a contradiction.
It follows that $I = \{0\}$. As ϕ is a group homomorphism with trivial kernel, it follows that ϕ is injective.
5. (20pts) Let X be a set, let R be a ring and let F be the ring of all functions from X to R with pointwise addition and multiplication.

(i) Show that $f \in F$ is invertible if and only if $f(x) \in R$ is invertible, for all $x \in X$.

Suppose that f is invertible, with inverse g, so that $fg = gf = 1$. If $x \in X$ then

$$1 = (fg)(x) = f(x)g(x) \quad \text{and} \quad 1 = (gf)(x) = g(x)f(x)$$

so that $g(x)$ is the inverse of $f(x)$. In particular $f(x)$ is invertible. Now suppose that $f(x)$ is invertible, for all $x \in X$. Define a function $g: X \to R$ by sending x to the inverse of $f(x)$. In this case

$$(fg)(x) = f(x)g(x) = 1 \quad \text{and} \quad (gf)(x) = g(x)f(x) = 1.$$

Thus $fg = gf = 1$ and so g is the inverse of f.

(ii) Let Y be a subset of X and let G be the ring of all functions from Y to R. Show that the map $\phi: F \to G$ which sends a function $f: X \to R$ to its restriction to Y is a ring homomorphism.

If f and $g \in F$ then

$$\phi(f + g) = (f + g)|_Y = f|_Y + g|_Y = \phi(f) + \phi(g) \quad \text{and} \quad \phi(fg) = (fg)|_Y = (f|_Y)(g|_Y) = \phi(f)\phi(g).$$

On the other hand, it is clear that the constant function 1, restricts to the constant function 1. Thus $\phi(1) = 1$ and ϕ is a ring homomorphism.
(iii) If \(X = [0, 1], \ R = \mathbb{R} \) and \(I \subset F \) is the set of functions vanishing at \(1/2 \) then show that \(I \) is a maximal ideal.

If \(Y = \{1/2\} \) and \(\phi \) is the ring homomorphism above then the kernel of \(\phi \) is \(I \). \(G \) is a copy of \(\mathbb{R} \), since a function on \(Y \) is determined by its value at \(1/2 \). By the Isomorphism Theorem, \(F/I \cong \mathbb{R} \). But an ideal is maximal if and only if the quotient ring is a field. Therefore \(I \) is maximal.

(iv) If \(X = [0, 1], \ R = \mathbb{R} \) and \(J \subset F \) is the set of functions vanishing at both \(1/3 \) and \(2/3 \) then show that \(I \) is not a prime ideal.

Let
\[
\begin{align*}
f(x) &= \begin{cases}
0 & \text{if } x = 1/3 \\
1 & \text{otherwise}
\end{cases} \\
g(x) &= \begin{cases}
0 & \text{if } x = 2/3 \\
1 & \text{otherwise}
\end{cases}
\end{align*}
\]

Then \(f \) and \(g \notin J \) but \(fg \in J \). Thus \(J \) is not prime.
Bonus Challenge Problems

6. (10pts) Let R be the ring of all 2×2 matrices with entries in \mathbb{Z}_p, p a prime. Let G be the subset of all 2×2 matrices with non-zero determinant. How many elements does G have?

We just want to count the number of invertible 2×2 matrices with entries in the field \mathbb{Z}_p. Now a square matrix is invertible if and only if its rows are a basis. So we just want to count the number of ordered bases of the vector space \mathbb{Z}_p^2. We have to pick two independent vectors. We pick them one at a time. We are free to pick any vector for the first vector, except zero. So there are $p^2 - 1$ choices of the first vector. For the second vector we just have to make sure we don’t pick a multiple of the first vector. There are p different multiples of the first vector, so there are $p^2 - p$ choices for the second vector. Thus there are $(p^2 - 1)(p^2 - p)$ elements of G.
7. (10pts) Construct a field with 49 elements.

We just mimic the construction in the book and the lecture notes. Let I be the set of Gaussian integers R of the form $a + bi$ where both a and b are divisible by 7.

It is clear that I is an ideal and $I \neq R$. The quotient ring R/I has 49 elements, since there are seven possible residues for both the real and imaginary parts. Note that R/I is a field if and only if I is maximal.

We first follow the book. Suppose that $I \subset J$ is an ideal, not equal to I. Then we can find $a + bi \in J$ but not in I. It follows that 7 does not divide at least one of a or b.

Now the possible congruences of a square modulo 7 are $0, 1 = 1^2 = 6^2, 4 = 2^2 = 5^2$ and $2 = 3^2 = 4^2$. It follows that if 7 divides an integer of the form $x^2 + y^2$ then 7 must divide x and y. Therefore 7 does not divide $c = a^2 + b^2$. As

$$c = (a + bi)(a - bi),$$

it follows that c belongs to J but not to I. As c is coprime to 7 we may find x and y such that

$$1 = xc + 7y.$$

As $7 \in I \subset J$, it follows that $1 \in J$. Thus $J = R$ and so I is maximal.

Instead we can follow the lecture notes. We sketch the details. As R/I is finite it is field if and only if it is an integral domain, R/I is an integral domain if and only if I is prime.

Suppose that $(a + bi)(c + di) \in I$ but $a + bi \notin I$. As

$$(a + bi)(c + di) = (ac - bd) + (ad + bc)i,$$

7 divides $ac - bd$ and $ad + bc$.

Adding and subtracting these together we get that 7 divides

$$(a + b)c - (b - a)d \quad \text{and} \quad (a + b)d + (b - a)c,$$

7 divides

$$(2a + b)c - (2b - a)d \quad \text{and} \quad (2a + b)d + (2b - a)c,$$

and 7 divides

$$(a + 2b)c - (b - 2a)d \quad \text{and} \quad (a + 2b)d + (b - 2a)c.$$

By assumption 7 does not divide both a and b. In this case 7 divides a but not b, or vice-versa, of the same is true replacing the pair (a, b) by $(a + b, b - a), (2a + b, 2b - a), (a + 2b, b - 2a)$. Now finish as in the lecture notes.