SECOND MIDTERM MATH 100B, UCSD, WINTER 17

You have 50 minutes.

There are 6 problems, and the total number of points is 80. Show all your work. *Please make your work as clear and easy to follow as possible.*

Name:
Signature:
Section instructor:
Section Time:

Problem	Points	Score
1	15	
2	15	
3	10	
4	10	
5	20	
6	10	
7	10	
8	10	
Total	80	

1. (15pts) Give the definition of associate elements of an integral domain.

Elements a and b of an integral domain R are associates if a divides b and b divides a.

(ii) Give the definition of a Euclidean domain.

An integral domain is a Euclidean domain if there is a function

$$d\colon R-\{0\}\longrightarrow \mathbb{N}\cup\{0\}$$

such that if a and b are non-zero elements of R then $d(a) \leq d(ab)$ and we may find q and r such that

b = aq + r

where either r = 0 or d(r) < d(a).

(iii) Give the definition of a unique factorisation domain.

An integral domain R is a UFD if every non-zero non-invertible element of R is a product of primes and this decomposition is unique, up to order and associates. 2. (15pts) Let a and b be two elements of an integral domain. Show that the following are equivalent
(i) a and b are associates.
(ii) there is an invertible element u of R such that a = ub.
(iii) \lapsilon a \rangle = \lapsilon b.

Note that a divides b if and only if b = qa for some $q \in R$ if and only if $b \in \langle a \rangle$ if and only if $\langle b \rangle \subset \langle a \rangle$. Thus (i) and (iii) are clearly equivalent. If a = ub then b divides a. But if vu = 1 then

$$b = 1 \cdot b = (vu)b = va$$

so that a divides b. Thus (ii) implies (i).

Now suppose that a and b are associates. As b divides a we may find q such that a = qb. As a divides b we may find p such that b = pa. In this case

$$b = pa$$
$$= p(qb)$$
$$= (pq)bb$$

Cancelling, we get that pq = 1. Thus p and q are invertible. Hence (i) implies (ii).

3. (10pts) Show that every Euclidean domain is a PID.

Let I be an ideal in a Euclidean domain. If I is the zero ideal then $I = \langle 0 \rangle$ so that I is principal.

Otherwise I contains non-zero elements. Pick a non-zero element a of I such that d(a) is minimal. Suppose that $b \in I$. By definition of a Euclidean domain we may find q and r such that

$$b = qa + r,$$

and either r = 0 or d(r) < d(a). Note that

$$r = b - qa \in I,$$

so that if $r \neq 0$ then $d(r) \geq d(a)$, by our choice of a. It follows that r = 0. But then a divides b and $b \in \langle a \rangle$. Thus $I = \langle a \rangle$. 4. (10pts) Let F be a field. Show that F[x] is a Euclidean domain.

Define a function

$$d\colon F[x]-\{0\}\longrightarrow \mathbb{N}\cup\{0\},$$

by sending a polynomial to its degree.

If f is a polynomial of degree m and g is a polynomial of degree n then fg is a polynomial of degree m + n. Thus $d(fg) \ge d(f)$. We now show that we can find q and r such that

$$g = qf + r_{\rm s}$$

and either r = 0 or the degree of r is less than the degree of f. We proceed by induction on the degree n of g. If n < m then take q = 0 and r = g. Then $r = g \neq 0$ and d(r) < d(f).

Otherwise we may assume that $n \ge m$. If the leading coefficient of f is a and the leading coefficient of g is b then let $q_0 = cx^{n-m}$, where c = b/a. Then

$$g_1 = g - q_0 f$$

has degree less than n. Thus by induction on the degree we can find q_1 and r such that

$$g_1 = q_1 f + r,$$

where either $r = 0$ or $d(r) < d(f).$
But

$$g = q_0 f + g_1$$
$$= qf + r,$$

where $q = q_0 + q_1$.

Thus F[x] is a Euclidean domain.

5. (20pts) (i) Carefully state Gauss' Lemma.

If $f(x) \in \mathbb{Z}[x]$ is an irreducible element of $\mathbb{Z}[x]$ then it is an irreducible element of $\mathbb{Q}[x]$.

(ii) Prove that the polynomial

$$f(x) = x^3 + 2x + 5$$

is an irreducible element of $\mathbb{Q}[x]$.

It suffices to show that it is an irreducible element of $\mathbb{Z}[x]$. Suppose not. As the content of f is one, we can write f = gh, where g and hare polynomials with integer coefficient of degree at least one.

We may suppose that the degree of g is at most the degree of h. As the degree of f is three, it follows that g has degree one and h has degree two, so that

$$g(x) = ax + b$$
 and $h(x) = cx^2 + dx + e$.

As ac = 1 we may suppose that $a = c = \pm 1$. Possibly multiplying g and h by -1 we may assume that a = c = 1, so that

$$(x+b)(x^2 + dx + e) = x^3 + 2x + 5.$$

As the coefficient of x^2 is zero, we must have b + d = 0. Thus we have

$$(x+b)(x^2 - bx + e) = x^3 + 2x + 5.$$

As be = 5, $b = \pm 1$ and $e = \pm 5$ or vice-versa. But $2 = -b^2 + e$, so that $e = 2 + b^2$.

If $b = \pm 1$ then e = 3, impossible. If $b = \pm 5$ then c = 27, impossible. Thus f(x) is irreducible. 6. (10pts) State Eisenstein's criteria. Prove that the polynomial f(x) $6x^{10}-25x^9+35x^8-15x^7-55x^6+30x^8+40x^5+10x^4-25x^3-5x^2+25x+5$, is an irreducible element of $\mathbb{Q}[x]$.

Let $f(x) \in \mathbb{Z}[x]$ be a polynomial with integer coefficients. If p is a prime that does not divide the leading coefficient, p divides every other coefficient and p^2 does not divide the constant coefficient then f(x) is an irreducible element of $\mathbb{Q}[x]$.

Let p = 5. Then 5 does not divide the leading coefficient 6, 5 divides every other coefficient and 25 does not divide the constant coefficient 5. Thus f(x) is irreducible, by Eisenstein's criteria applied with p = 5.

Bonus Challenge Problems

7. (10pts) Find all irreducible polynomials of degree at most three over the field with three elements.

It suffices to find all monic polynomials and then multiply by 2 to get the other polynomials. Every non-zero constant is invertible. Every degree one polynomial is irreducible; these are

x, x+1, x+2, 2x, 2x+1 and 2x+2.

A quadratic or cubic polynomial is irreducible if and only if it has no zeroes.

Suppose that $f(x) = x^2 + ax + b$ is a monic quadratic. 0 is not a zero if and only if $b \neq 0$. 1 is not a zero if and only if $1 + a + b \neq 0$. 2 is not a zero if and only if $1 + 2a + b \neq 0$. If b = 1 we must have $a \neq 1$ and $2a \neq 1$ so that a = 0. If b = 2 then $a \neq 0$ and $2a \neq 0$, so that a = 1 or 2. Thus the irreducible quadratics are

 $x^{2}+1$, $x^{2}+x+2$, $x^{2}+2x+2$, $2x^{2}+2$, $2x^{2}+x+1$ and $x^{2}+x+2$.

Now consider a monic cubic $f(x) = x^3 + ax^2 + bx + c$. 0 is not a zero if and only if $c \neq 0$. 1 is not a zero if and only if $1 + a + b + c \neq 0$. 2 is not a zero if and only if $2 + a + 2b + c \neq 0$. If c = 1 we must have $a + b \neq 1$ and $a + 2b \neq 0$ so that a = 0 and b = 2, or a = 1 and b = 2 or a = 2 and b = 0. If c = 2 then $a + b \neq 0$ and $a + 2b \neq 2$ so that a = 0 and b = 2 or a = 1 and b = 2. Thus the irreducible monic cubics are

$$x^{3}+2x+1$$
, $x^{3}+x^{2}+2x+1$, $x^{3}+2x^{2}+1$ and $x^{3}+2x^{2}+x+1$,

 $x^{3}+2x+2$, $x^{3}+x^{2}+2$, $x^{3}+x^{2}+x+2$ and $x^{3}+2x^{2}+x+2$.

If multiply these by two we get the other irreducible cubics.

First consider trying to factor $f(x) \in R[x]$ into irreducibles. We can write f(x) = cg(x) where $c \in R$ and the content of g(x) is one. As we can factor c into irreducibles, it suffices to factor g(x) into irreducibles, so we may assume that the content of f(x) is one.

If f(x) is not irreducible then we can find f_1 and g_1 of positive degree such that $f(x) = f_1g_1$. As the degrees of f_1 and g_1 are smaller than the degree of f it follows that f_1 and g_1 are products of irreducibles, by induction on the degree. Thus every element of R[x] is a product of irreducibles.

Now we turn to proving that irreducible implies prime. Suppose that $f(x) \in R[x]$ is irreducible. Then the content of f(x) is one. It follows by Gauss' Lemma that $f(x) \in F[x]$ is irreducible, so that $f(x) \in F[x]$ is prime.

Suppose that f divides gh. As $f(x) \in F[x]$ is prime it follows that it must divide one of the factors. Suppose it divides g(x) in the polynomial ring F[x]. Then we can write $g(x) = f(x)k_1(x)$, where $k_1(x) \in$ F[x]. If we clear denominators and cancel then g(x) = f(x)k(x) where $k(x) \in R[x]$ is a multiple of $k_1(x)$. But then f(x) divides g(x) in the polynomial ring R[x]. Thus f(x) is a prime in R[x]. Thus R[x] is a UFD.