
SECOND MIDTERM

MATH 100B, UCSD, WINTER 17

You have 50 minutes.

There are 6 problems, and the total number of

points is 80. Show all your work. Please make

your work as clear and easy to follow as possible.

Name:

Signature:

Section instructor:

Section Time:

Problem Points Score

1 15

2 15

3 10

4 10

5 20

6 10

7 10

8 10

Total 80
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1. (15pts) Give the definition of associate elements of an integral do-
main.

Elements a and b of an integral domain R are associates if a divides b
and b divides a.

(ii) Give the definition of a Euclidean domain.

An integral domain is a Euclidean domain if there is a function

d : R− {0} −→ N ∪ {0}

such that if a and b are non-zero elements of R then d(a) ≤ d(ab) and
we may find q and r such that

b = aq + r

where either r = 0 or d(r) < d(a).

(iii) Give the definition of a unique factorisation domain.

An integral domain R is a UFD if every non-zero non-invertible element
of R is a product of primes and this decomposition is unique, up to
order and associates.

1



2. (15pts) Let a and b be two elements of an integral domain.
Show that the following are equivalent
(i) a and b are associates.
(ii) there is an invertible element u of R such that a = ub.
(iii) 〈a〉 = 〈b〉.

Note that a divides b if and only if b = qa for some q ∈ R if and only
if b ∈ 〈a〉 if and only if 〈b〉 ⊂ 〈a〉.
Thus (i) and (iii) are clearly equivalent.
If a = ub then b divides a. But if vu = 1 then

b = 1 · b = (vu)b = va,

so that a divides b. Thus (ii) implies (i).
Now suppose that a and b are associates. As b divides a we may find
q such that a = qb. As a divides b we may find p such that b = pa. In
this case

b = pa

= p(qb)

= (pq)b.

Cancelling, we get that pq = 1. Thus p and q are invertible. Hence (i)
implies (ii).
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3. (10pts) Show that every Euclidean domain is a PID.

Let I be an ideal in a Euclidean domain. If I is the zero ideal then
I = 〈0〉 so that I is principal.
Otherwise I contains non-zero elements. Pick a non-zero element a of
I such that d(a) is minimal. Suppose that b ∈ I. By definition of a
Euclidean domain we may find q and r such that

b = qa+ r,

and either r = 0 or d(r) < d(a). Note that

r = b− qa ∈ I,

so that if r 6= 0 then d(r) ≥ d(a), by our choice of a.
It follows that r = 0. But then a divides b and b ∈ 〈a〉. Thus I = 〈a〉.
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4. (10pts) Let F be a field. Show that F [x] is a Euclidean domain.

Define a function

d : F [x]− {0} −→ N ∪ {0},

by sending a polynomial to its degree.
If f is a polynomial of degree m and g is a polynomial of degree n then
fg is a polynomial of degree m+ n. Thus d(fg) ≥ d(f).
We now show that we can find q and r such that

g = qf + r,

and either r = 0 or the degree of r is less than the degree of f .
We proceed by induction on the degree n of g. If n < m then take
q = 0 and r = g. Then r = g 6= 0 and d(r) < d(f).
Otherwise we may assume that n ≥ m. If the leading coefficient of f
is a and the leading coefficient of g is b then let q0 = cxn−m, where
c = b/a. Then

g1 = g − q0f

has degree less than n. Thus by induction on the degree we can find
q1 and r such that

g1 = q1f + r,

where either r = 0 or d(r) < d(f).
But

g = q0f + g1

= qf + r,

where q = q0 + q1.
Thus F [x] is a Euclidean domain.
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5. (20pts) (i) Carefully state Gauss’ Lemma.

If f(x) ∈ Z[x] is an irreducible element of Z[x] then it is an irreducible
element of Q[x].

(ii) Prove that the polynomial

f(x) = x3 + 2x+ 5

is an irreducible element of Q[x].

It suffices to show that it is an irreducible element of Z[x]. Suppose
not. As the content of f is one, we can write f = gh, where g and h
are polynomials with integer coefficient of degree at least one.
We may suppose that the degree of g is at most the degree of h. As the
degree of f is three, it follows that g has degree one and h has degree
two, so that

g(x) = ax+ b and h(x) = cx2 + dx+ e.

As ac = 1 we may suppose that a = c = ±1. Possibly multiplying g
and h by −1 we may assume that a = c = 1, so that

(x+ b)(x2 + dx+ e) = x3 + 2x+ 5.

As the coefficient of x2 is zero, we must have b+ d = 0. Thus we have

(x+ b)(x2 − bx+ e) = x3 + 2x+ 5.

As be = 5, b = ±1 and e = ±5 or vice-versa. But 2 = −b2 + e, so that
e = 2 + b2.
If b = ±1 then e = 3, impossible. If b = ±5 then c = 27, impossible.
Thus f(x) is irreducible.
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6. (10pts) State Eisenstein’s criteria. Prove that the polynomial f(x)

6x10−25x9+35x8−15x7−55x6+30x8+40x5+10x4−25x3−5x2+25x+5,

is an irreducible element of Q[x].

Let f(x) ∈ Z[x] be a polynomial with integer coefficients. If p is a
prime that does not divide the leading coefficient, p divides every other
coefficient and p2 does not divide the constant coefficient then f(x) is
an irreducible element of Q[x].
Let p = 5. Then 5 does not divide the leading coefficient 6, 5 divides
every other coefficient and 25 does not divide the constant coefficient
5. Thus f(x) is irreducible, by Eisenstein’s criteria applied with p = 5.
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Bonus Challenge Problems

7. (10pts) Find all irreducible polynomials of degree at most three over
the field with three elements.

It suffices to find all monic polynomials and then multiply by 2 to get
the other polynomials. Every non-zero constant is invertible.
Every degree one polynomial is irreducible; these are

x, x+ 1, x+ 2, 2x, 2x+ 1 and 2x+ 2.

A quadratic or cubic polynomial is irreducible if and only if it has no
zeroes.
Suppose that f(x) = x2 + ax+ b is a monic quadratic. 0 is not a zero
if and only if b 6= 0. 1 is not a zero if and only if 1+ a+ b 6= 0. 2 is not
a zero if and only if 1 + 2a + b 6= 0. If b = 1 we must have a 6= 1 and
2a 6= 1 so that a = 0. If b = 2 then a 6= 0 and 2a 6= 0, so that a = 1 or
2. Thus the irreducible quadratics are

x2+1, x2+x+2, x2+2x+2, 2x2+2, 2x2+x+1 and x2+x+2.

Now consider a monic cubic f(x) = x3 + ax2 + bx + c. 0 is not a zero
if and only if c 6= 0. 1 is not a zero if and only if 1 + a + b + c 6= 0. 2
is not a zero if and only if 2 + a + 2b + c 6= 0. If c = 1 we must have
a + b 6= 1 and a + 2b 6= 0 so that a = 0 and b = 2, or a = 1 and b = 2
or a = 2 and b = 0. If c = 2 then a + b 6= 0 and a + 2b 6= 2 so that
a = 0 and b = 2 or a = 1 and b = 0 or b = 1 or a = 2 and b = 2. Thus
the irreducible monic cubics are

x3+2x+1, x3+x2+2x+1, x3+2x2+1 and x3+2x2+x+1,

x3+2x+2, x3+x2+2, x3+x2+x+2 and x3+2x2+x+2.

If multiply these by two we get the other irreducible cubics.
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8. (10pts) Prove that if R is a UFD then R[x] is a UFD.

First consider trying to factor f(x) ∈ R[x] into irreducibles. We can
write f(x) = cg(x) where c ∈ R and the content of g(x) is one. As we
can factor c into irreducibles, it suffices to factor g(x) into irreducibles,
so we may assume that the content of f(x) is one.
If f(x) is not irreducible then we can find f1 and g1 of positive degree
such that f(x) = f1g1. As the degrees of f1 and g1 are smaller than
the degree of f it follows that f1 and g1 are products of irreducibles,
by induction on the degree. Thus every element of R[x] is a product of
irreducibles.
Now we turn to proving that irreducible implies prime. Suppose that
f(x) ∈ R[x] is irreducible. Then the content of f(x) is one. It follows
by Gauss’ Lemma that f(x) ∈ F [x] is irreducible, so that f(x) ∈ F [x]
is prime.
Suppose that f divides gh. As f(x) ∈ F [x] is prime it follows that it
must divide one of the factors. Suppose it divides g(x) in the polyno-
mial ring F [x]. Then we can write g(x) = f(x)k1(x), where k1(x) ∈
F [x]. If we clear denominators and cancel then g(x) = f(x)k(x) where
k(x) ∈ R[x] is a multiple of k1(x). But then f(x) divides g(x) in the
polynomial ring R[x]. Thus f(x) is a prime in R[x].
Thus R[x] is a UFD.
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