MODEL ANSWERS TO THE THIRD HOMEWORK

2. Chapter 4, §4: 1. Note that if 3 does not divide a, then either a is congruent to 1 or 2 modulo 3 . Either way a^{2} is congruent to $1=1^{2}=2^{2}$ modulo three. In this case $a^{2}+b^{2}$ is congruent to either $1=1+0$ or $2=1+1$, modulo three. Thus 3 does not divide $a^{2}+b^{2}$.
3. It is proved in example 2 that M is maximal so that R / M is a field and so it suffices to prove that R / M has cardinality 9 . There are two ways, essentially equivalent, ways to proceed. The first is to observe that $a+b i$ and $c+d i$ generate the same left coset if and only if $(a-c)+(b-d) i \in I$, that is 3 divides $a-c$ and 3 divides $b-d$. In turn, this is equivalent to saying that a and c (respectively b and d) have the same residue modulo 3 . As there are 3 residues modulo three, namely 0,1 and 2 , there are $9=3 \times 3$ left cosets, and R / M has cardinality 9 . The second way to proceed is to define a map

$$
\phi: \mathbb{Z}[i] \longrightarrow \mathbb{Z} \oplus \mathbb{Z}
$$

by sending $a+b i$ to (a, b). It is easy to check that this map is a group homomorphism (and just as easy to see that it is not a ring homomorphism). Under this correspondence, I corresponds to $3 \mathbb{Z} \oplus 3 \mathbb{Z}$ and so the cardinality of R / M is equal to the cardinality of

$$
\frac{\mathbb{Z} \oplus \mathbb{Z}}{3 \mathbb{Z} \oplus 3 \mathbb{Z}} \simeq \mathbb{Z}_{3} \oplus \mathbb{Z}_{3}
$$

which, as before, is $9=3 \times 3$.
7. First note that, as $\sqrt{2}$ is irrational, then

$$
a+b \sqrt{2}=c+d \sqrt{2},
$$

if and only if $a=c$ and $b=d$. Indeed if $b=d$, then this is clear. Otherwise, we can solve for $\sqrt{2}$ to obtain

$$
\sqrt{2}=\frac{a-c}{d-b} \in \mathbb{Q},
$$

a contradiction. Thus the fact that R / M has 25 elements follows, as in 2.
It remains to prove that M is maximal. Given two integers a and b, consider $a^{2}-2 b^{2}$. As before, the key point to establish is that if 5 does not divide at least one of a or b then it does not divide $a^{2}-2 b^{2}$. The squares modulo 5 are 0,1 and 4 , and multiplying by three we get 0,3 and 2 . If we take the sum of one number from the first list and
one number from the second, as before, the only way to get a number congruent to zero modulo 5 , is to pick zero from both. The rest follows as in example 2.
8. Take I to be the set of all Gaussian integers of the form $a+b i$, where both a and b are divisible by 7 . The key point is that if 7 does not divide a, then 7 does not divide $a^{2}+b^{2}$. Indeed the squares modulo seven are $0,1,2$ and 4 , as can be seen by squaring $0,1,2$ and 3 (for the rest observe that $a^{2}=(-a)^{2}=(7-a)^{2}$, modulo seven). If a pair of these sum to a number divisible by 7 , then both of these numbers must be 0 . The rest follows as in example 2.

