
MODEL ANSWERS TO THE FOURTH HOMEWORK

1. We are told that I is an ideal. Suppose that J is any ideal of R. To
show that I is maximal it suffices to show that ever ideal J of R not
contained in I is equal to R.
As J is not contained in I there is an element a ∈ R such that a ∈ J
whilst a /∈ I. By assumption, a is then a unit of R, so that there is
an element b ∈ R such that ab = 1. Then 1 = ba ∈ J . Let c be an
arbitrary element of R. Then c = c · 1 ∈ J . Thus J = R. It follows
that I is the unique maximal ideal.
2. (i) Replacing S by the image of φ, we may as well assume that φ
is surjective. Let ψ denote the composition of φ and the natural map
from S to S/J . Then the kernel of ψ is I. Thus I is an ideal of R.
Moreover by the Isomorphism Theorem,

R

I
' S

J
.

As J is prime, S/J is an integral domain. Thus R/I is also an integral
domain and so I is prime.
(ii) The key point is to exhibit an ideal of a ring that is prime but not
maximal. For example take the zero ideal in Z. Consider the natural
inclusion

φ : Z −→ Q,

which is easily seen to be a ring homomorphism. Then the zero ideal
J of Q is maximal as Q is a field. But the inverse image I of J is the
zero ideal of Z which is not maximal, as Z is not a field.
3. Suppose that p is prime and that p = ab, for a and b two elements
of R. Certainly p|(ab), so that either p|a or p|b. Suppose p|a. Then
a = pc. We have p = ab = p(bc). Cancelling, bc = 1 so that b is a unit.
Thus p is irreducible.
4. It is convenient to introduce the norm, N(α), of any element of

Z[
√
−5]. In fact it is not harder to do the general case Z[

√
d], where d

is any square-free integer. Given α = a+b
√
d, the norm is by definition

N(α) = a2 − b2d.

Using the well-known identity,

A2 −B2 = (A+B)(A−B),
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note that the norm can be rewritten,

N(α) = (a+ b
√
d)(a− b

√
d) = αᾱ,

where ᾱ, known as the conjugate of α, is by definition a− b
√
d. Note

that in the case d < 0, in fact ᾱ is precisely the complex conjugate
of α. The key property of the norm, which may be checked easily, is
that it is multiplicative (this is automatic when d < 0). Suppose that
γ = αβ, then

N(γ) = N(α)N(β).

Indeed if α = a+ b
√
d and β = a′ + b′

√
d, then

γ = (aa′ + bb′d) + (a′b+ ab′)
√
d,

so that

N(γ) = (aa′ + bb′d)2 − d(a′b+ ab′)2

= (aa′)2 + (bb′)2d2 − d(a′b)2 − d(ab′)2.

On the other hand

N(α)N(β) = (a2 − b2d)((a′)2 − (b′)2d)

= (aa′)2 + (bb′)2d2 − d(a′b)2 − d(ab)2

= N(γ).

We first use this to determine the units. Note that if α is a unit, then
there is an element β such that αβ = 1. Thus

N(α)N(β) = N(αβ) = N(1) = 1,

so that N(α) and N(β) are divisors of 1. Thus if α = a+ b
√
d is unit,

then a2 − b2d = ±1. Conversely, if the norm of α is ±1, then ∓ᾱ is
the inverse of α. It follows that the units are precisely those elements
whose norm is ±1.
(a) As d = −5, the units are precisely those elements α = a + b

√
−5

such that

a2 + 5b2 = 1.

The only possibilities are a = ±1, b = 0, so that α = ±1. Suppose
that 2 is not irreducible, so that 2 = αβ, where α and β are not units.
Then

4 = N(2) = N(α)N(β).

As α and β are not units, then N(α) and N(β) are greater than one.
It follows that N(α) = N(β) = 2. Suppose that

a2 + 5b2 = 2.
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Then b = 0 and a = ±
√

2, not an integer. Thus 2 is irreducible.
For 3, the proof proceeds verbatim, with 2 replacing 3. The crucial
observation is that one cannot solve

a2 + b2 = 3.

where a and b are integers. For 1 +
√

5, observe that its norm is 6,
so that α and β are of norm 2 and 3, which we have already seen is
impossible.
(b) It suffices to prove that every ascending chain of principal ideals
stabilises. But this is clear, since if

〈α〉 ⊂ 〈β〉,
then

N(β) ≤ N(α),

with equality in one equation if and only if there is equality for the
other. Thus a strictly increasing chain of principal ideals is the same
thing as a strictly decreasing chain of natural numbers. Thus the set
of principal ideals satisfies ACC as the set of natural numbers satisfies
DCC.
(c) By (a),

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5),

are two different factorisations of 6 into irreducibles.
5. (a) Clearly I + J is non-empty. For example it contains 0 = 0 + 0 ∈
I+J . Suppose that a and b are in I+J . Then a = i+ j and b = k+ l,
where i and k are in I and k and l are in J . In this case

a+ b = (i+ j) + (k + l)

= (i+ k) + (j + l).

As i+ k ∈ I and j + l ∈ J , it follows that a+ b ∈ I + J . Thus I + J is
closed under addition. Now suppose r ∈ R. Then

ra = r(i+ j)

= ri+ rj.

As I and J are ideals, ri ∈ I and rj ∈ J . Thus ra ∈ I + J . Taking
r = −1, we see that I + J is closed under inverses. Thus I + J is an
ideal.
(b) Note that 〈1〉 = R. Indeed given r ∈ R, r = r · 1 ∈ 〈1〉. Thus
an ideal K is the whole of R if and only if it contains 1. The result
follows.
(c) We want to prove

IJ = I ∩ J.
3



One inclusion is clear. If a ∈ IJ , then a is a sum of terms of the form
ij. Each term is clearly in i, as i ∈ I and j ∈ R and I is an ideal. Thus
a ∈ I. By symmetry a ∈ J . It follows that that a ∈ I ∩ J .
Now suppose that a ∈ I ∩ J . Now 1 = i+ j. In this case,

a = a · 1
= a(i+ j)

= ai+ aj.

Now a ∈ J and so ai ∈ IJ . Similarly a ∈ I and so aj ∈ IJ . Thus
a ∈ IJ .
6. By 5 (c) and an obvious induction, it suffices to prove that I = I1
and

Jk =
k∏

a=2

Ia

are coprime. We proceed by induction on k. The case k = 2 is part of
our assumption. By induction then, we can write

1 = i+ j,

where j ∈ Jk−1. On the other hand, as I and Ik are coprime, we may
write

1 = a+ b,

where a ∈ I and b ∈ Ik. Now multiply these two equations,

1 = 1 · 1
= (i+ j)(a+ b)

= ia+ ib+ ja+ jb.

Now the first two terms are elements of I and the last two are elements
of Jk. The result follows.
7. (a) Let

φi : R −→ Ri

be the natural map. Then φi is a ring homomorphism. φ is the map
derived from the universal property of the direct sum; as such it is
automatically a ring homomorphism.
(b) I claim first that φ is surjective if and only if there are elements
s1, s2, . . . , sk of R such that

φb(sa) = δab,

where δab is defined in the standard way as

δab =

{
1 if a = b

0 otherwise.
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One direction is clear. Otherwise suppose we can find such s1, s2, . . . , sk.
Pick (x1, x2, . . . , xk) ∈ ⊕k

i=1Ri. Then each xa = ta + Ia. Set

s =
∑
a

tasa.

It suffices to prove that φa(s) = ta + Ia, that is, to prove this result
coordinate by coordinate. But

φa(s) = φa(
∑
b

tbsb)

=
∑
b

φa(tb)φa(sb)

=
∑
b

δab(tb + Ib)

= ta + Ia,

as required.
So it suffices to prove that I1, I2, . . . , Ik are pairwise coprime if and only
if we can find s1, s2, . . . , sk as above.
First suppose that we can find such elements s1, s2, . . . , sk. Pick two
indices a and b and let I = Ia, J = Ib and s = sa. Then s+ I = 1 + I
and s + J = 0 + J = J . It follows that there are elements i and j of
I and J such that s + i = 1 and s = j. In this case 1− i = j, so that
1 = i + j. Hence I and J are coprime. As a and b are arbitrary, it
follows that if φ is surjective then I1, I2, . . . , Ik are pairwise coprime.
It remains to prove that if I1, I2, . . . , Ik are pairwise coprime, we may
find s1, s2, . . . , sk with the given properties. By symmetry we may
assume that a = 1. Set I = I1 and J = ∩ka=2Ia. Then we have already
seen that I and J are coprime. Thus there are i and j in I and J such
that 1 = i+ j. Let s = j. As j ∈ J , φb(sa) = 0, if b > 1. As s = 1− i,
φ(s) = 1. The result follows.
(c) The kernel is clearly equal to the intersection of the ideals. By 2,
this is the same as the product.
8. Follows immediately from the Isomorphism Theorem and what we
proved. There are two places that the book asks the reader to prove
versions of the Chinese Remainder Theorem. The first is on page 147.
The relevant questions are 20, 21, 22, 23 and 24. 20 follows from our
version (GCRT). 21 is a special case of 23. 22 is a special case of the
GCRT. 23 follows from the our version, by taking R = Z, I = 〈m〉 and
J = 〈n〉. 24 is equivalent to saying φ is surjective.
The second is on page 165. The relevant question is 17. As R = F [x]
is a UFD, if p(x) is prime it is certainly irreducible. As R is also a
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Euclidean domain, if p(x) and q(x) have no common factor (for example
if p(x) is prime and p(x) does not divide q(x)) then we may find r and
s such that

1 = r(x)p(x) + s(x)q(x).

Thus the ideals 〈pa(x)〉 are pairwise coprime and the result follows by
the GCRT.
9. Say that S has the cancellation property if whenever a+b = a+c
then b = c. This is the natural analogue of the condition that there
are no zero divisors in the ring; it is equivalent to saying that S can be
embedded in a group.
Say that a and b are associates if a = b+ c and a+ d = b for some c
and d.
Say that p is prime if whenever p+ c = a+ b then either p+ d = a or
p+ d = b for some d.
We say that S has unique factorisation if every non-zero element
a of S, not a unit, is a sum of primes, unique up to re-ordering and
associates.
10. First thin out the sequence v1, v2, . . . , vn by discarding any elements
which are positive integral linear combinations of the other vectors.
The remaining vectors are then all irreducible.
In this case I claim that S has unique factorisation if and only if
v1, v2, . . . , vn are independent as vectors in the vector space Q2. In
particular if S has unique factorisation then n ≤ 2 and if there are two
vectors, then neither is a multiple of the other.
Indeed suppose that we don’t have unique factorisation. Then there is
v ∈ Z2 such that,

v =
∑

aivi =
∑

bivi,

where ai 6= bi for some i and a1, a2, . . . , an and b1, b2, . . . , bn are positive
integers. Subtracting one side from the other, exhibits a linear depen-
dence between v1, v2, . . . , vn. Conversely, suppose that v1, v2, . . . , vn are
linearly dependent. Then we could find rational numbers c1, c2, . . . , cn,
not all zero, so that ∑

civi = 0.

Separating into positive and negative parts, a1, a2, . . . , an and b1, b2, . . . , bn
and putting the negative part on the other side, we would have∑

aivi =
∑

bivi,

for some positive rational numbers a1, a2, . . . , an and b1, b2, . . . , bn. Mul-
tiplying through by a highly divisible positive integer, we could clear
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denominators, so that a1, a2, . . . , an and b1, b2, . . . , bn are integers. But
then unique factorisation fails.
8. Let k be a field and let S be the infinite polynomial ring

k[x1, x2, . . . ].

Let I be the ideal generated by x1x2 = x3x4x5 and x4x5 = x6x7x8,
x7x8 = x9x10x11 and so on. Let R be the ring S/I. It is not hard to
show that x1, x2, . . . are irreducible and that every element is a product
of irreducibles.
Consider a = x1x2 ∈ R. Then x1 and x2 are irreducible and so a
is a product of irreducibles. But x1x2 = x3x4x5, so that a is also a
product of x3, x4 and x5. As x4x5 = x6x7x8 we can keep going and the
factorisation algorithm does not terminate starting with a.
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