MODEL ANSWERS TO THE SEVENTH HOMEWORK

1. (i) Probably the easiest example is to take the zero ideal in \mathbb{Z} . This is prime, as \mathbb{Z} is an integral domain, but it is not maximal as the quotient, \mathbb{Z} , is not a field.

(ii) Take the example given in (iii).

(iii) By Gauss' Lemma, $\mathbb{Z}[x]$ is a UFD. On the other hand I claim the ideal $I = \langle 2, x \rangle$ is not principal. Indeed suppose it was, so that $\langle 2, x \rangle = \langle f(x) \rangle$. As $2 \in I$ it follows that f(x) divides 2. Up to associates, it would then follow that f(x) = 1 or 2. By the same token, f(x) must divide x as well, and so f(x) = 1. But this is a contradiction, as $1 \notin I$.