MODEL ANSWERS TO THE SEVENTH HOMEWORK

1. (i) Probably the easiest example is to take the zero ideal in \mathbb{Z}. This is prime, as \mathbb{Z} is an integral domain, but it is not maximal as the quotient, \mathbb{Z}, is not a field.
(ii) Take the example given in (iii).
(iii) By Gauss' Lemma, $\mathbb{Z}[x]$ is a UFD. On the other hand I claim the ideal $I=\langle 2, x\rangle$ is not principal. Indeed suppose it was, so that $\langle 2, x\rangle=$ $\langle f(x)\rangle$. As $2 \in I$ it follows that $f(x)$ divides 2 . Up to associates, it would then follow that $f(x)=1$ or 2 . By the same token, $f(x)$ must divide x as well, and so $f(x)=1$. But this is a contradiction, as $1 \notin I$.
