
MODEL ANSWERS TO THE NINTH HOMEWORK

1. (a) We have to define an R-linear map,

φ : M ⊗
R
N −→ N ⊗

R
M.

By the universal property of M ⊗
R
N , it suffices to exhibit a bilinear

map

f : M ×N −→ N ⊗
R
M

The composition of u : N ×M −→ N ⊗
R
M and the map

M ×N −→ N ×M which sends (m,n) −→ (n,m)

will obviously do. The inverse map is constructed similarly. The com-
position either way is easily seen to be the identity, either because
it satisfies the universal property of the identity, or because it is the
identity map on generators.
(b) One can prove this as above. Here is a much sneakier way to
proceed. Note the canonical isomorphism,

(M ×N)× P 'M × (N × P ).

On the other hand, given either triple product, one can consider tri-
linear maps, that is, maps that are linear in all three variables. It is
not hard to check that (M ⊗

R
N) ⊗

R
P satisfies the corresponding uni-

versal propery. Similarly for M ⊗
R

(N ⊗
R
P ). Thus they are canonically

isomorphic.
(c) We are going to show that M satisfies the properties of the tensor
product. First we need to exhibit a bilinear map,

u : R×M −→M

The definition of u is almost forced, send (r,m) to rm. This is clearly
a bilinear map. Now suppose we are given a bilinear map

f : R×M −→ N.

Define

φ : M −→ N
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by sending m to f(1,m). We check that the diagram,

R×M f- N

M

u

?

φ

....
....

....
....

....-

commutes. Suppose that (r,m) ∈ R×M . Then

φ ◦ u(r,m) = φ(rm)

= f(1, rm)

= rf(1,m)

= f(r,m),

where we applied bilinearity of f twice. Thus the diagram commutes.
Finally we check that φ is R-linear. Suppose that m1, m2 ∈M . Then

φ(m1 +m2) = f(1,m1 +m2)

= f(1,m1) + f(1,m2)

= φ(m1) + φ(m2).

Now suppose that r ∈ R and m ∈M . Then

φ(rm) = f(1, rm)

= rf(1,m)

= rφ(m).

Thus φ is R-linear. Thus M satisfies all the properties of a tensor
product and the result is clear.
(d) First we define a bilinear map

M × (N ⊕ P ) −→ (M ⊗
R
N)⊕ (M ⊗

R
P ),

by sending (m, (n, p)) to (m⊗n,m⊗ p). It is easy to check that this is
bilinear. This gives us a map one way. To get a map the other way, it
suffices, by definition of the direct sum and then of the tensor product
and by symmetry, to exhibit a bilinear map

M ×N −→M ⊗
R

(N ⊕ P ).

For this send (m,n) to m ⊗ (n, 0). Again it is clear that this map is
bilinear and that the induced R-linear maps are inverse to each other.
(e) As F ' Rn, this follows immediately from (c) and (d), by induction
on n.
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2. Let d be the gcd of m and n. I claim that

Zm ⊗
Z
Zn ' Zd.

The proof proceeds in two steps. First observe that

m(1⊗ 1) = m⊗ 1

= 0⊗ 1

= 0.

Similarly n(1⊗ 1) = 0. As Z is a PID, we may find r and s such that

d = rm+ sn.

Thus

d(1⊗ 1) = (rm+ sn)1⊗ 1

= r(m(1⊗ 1) + s(n(1⊗ 1))

= 0.

Thus Zm ⊗
Z
Zn is surely isomorphic to a subgroup of Zd. It remains to

check that no smaller multiple of 1⊗ 1 is zero. The best way to prove
this is to use the universal property. Let

f : Zm × Zn −→ Zd
be the map that sends (a, b) to ab. As d divides both m and n, this
map is indeed well-defined. On the other hand it is clearly bilinear. By
the universal property, it induces an R-linear map

φ : Zm ⊗
Z
Zn −→ Zd.

This map sends 1⊗ 1 to f(1, 1), that is, 1. Hence if k(1⊗ 1) = 0, then
k is zero in Zd and so d divides k. The result follows.
3. We first prove that M ⊗

R
N is finitely generated. Suppose that

x1, x2, . . . , xm and y1, y2, . . . , yn are generators of M and N . Then I
claim that xi ⊗ yj are generators of M ⊗

R
N . Indeed this is generated

by elements of the form m⊗ n, and so it is enough to observe that if

m =
∑

rixi and n =
∑

sini,

then
m⊗ n =

∑
risjxi ⊗ yj,

where of course we use bilinearity to distribute the sum.
If R is Noetherian then M ⊗

R
N is a finitely generated module over a

Noetherian ring so that M ⊗
R
N is Noetherian.
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Challenge Problems:
4. Any finitely generated abelian group is a direct sum of cyclic groups.
As the tensor product distributes over the direct sum, by (1) (d), it is
enough to determine the tensor product of two cyclic groups. Since the
tensor product is commutative, we have to calculate three products:

Z⊗
Z
Z Z⊗

Z
Zn and Zm ⊗

Z
Zn.

If we apply 1 (c) to the first two products and 2 to the last we get

Z⊗
Z
Z ' Z Z⊗

Z
Zn ' Zn and Zm ⊗

Z
Zn ' Zd.

5. Consider
a

b
⊗ c

d
,

where a, b, c and d are all integers, and bd 6= 0. We may suppose that
d > 0. In this case

0 =
a

bd
⊗ 0

=
a

bd
⊗ c

= d(
a

bd
⊗ c

d
)

=
a

b
⊗ c

d
.

Thus
Q/Z⊗

Z
Q/Z ' 0.

6. First observe that the direct sum Mn is Noetherian, by induction
on n, applied to the standard short exact sequence:

0 −→Mn−1 −→Mn −→M −→ 0.

It follows that
M ⊗

R
Rn ' (M ⊗

R
R)n 'Mn,

is Noetherian. By assumption there is a surjective R-linear map

Rn −→ N,

for some n. If we tensor this by M we get a surjective R-linear map (it
is a general fact that surjective maps remain surjective after tensoring)

M ⊗
R
Rn −→M ⊗

R
N.

Thus M ⊗
R
N is a quotient of a Noetherian R-module, so that it is

Noetherian.
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