
11. Counting Automorphisms

Definition 11.1. Let L/K be a field extension.
An automorphism of L/K is simply an automorphism of L which

fixes K.

Here, when we say that φ fixes K, we mean that the restriction of φ
to K is the identity, that is, φ extends the identity; in other words we
require that φ fixes every point of K and not just the whole subset.

Definition-Lemma 11.2. Let L/K be a field extension.
The Galois group of L/K, denoted Gal(L/K), is the subgroup of

the set of all functions from L to L, which are automorphisms over K.

Proof. The only thing to prove is that the composition and inverse of
an automorphism over K is an automorphism, which is left as an easy
exercise to the reader. �

The key issue is to establish that the Galois group has enough ele-
ments.

Proposition 11.3. Let L/K be a finite normal extension and let M
be an intermediary field.

TFAE

(1) M/K is normal.
(2) For every automorphism φ of L/K, φ(M) ⊂M .
(3) For every automorphism φ of L/K, φ(M) = M .

Proof. Suppose (1) holds. Let φ be any automorphism of L/K. Pick
α ∈M and set φ(α) = β. Then β is a root of the minimum polynomial
m of α. As M/K is normal, and α is a root of m(x), m(x) splits in M .
In particular β ∈M . Thus (1) implies (2).

Suppose that (2) holds and let φ be any automorphism of L/K. As
L/K is finite, then so is M/K. As φ is an automorphism,

[φ(M) : K] = [M : K].

On the other hand, by hypothesis φ(M) ⊂M . So by the Tower Law,
[M : φ(M)] = 1. Hence (2) implies (3).

Now suppose that (3) holds. Let f(x) be an irreducible polynomial
and let α ∈ M be a root of f(x). As L/K is normal, f(x) splits in L.
Let β be any other root of f(x). Then we may find an automorphism
φ of L that carries α to β, by (8.8). As φ(M) ⊂ M , it follows that
β ∈M . But then f(x) splits in M . Thus (3) implies (1). �

Lemma 11.4. Let L/K be a separable extension and let M/K be an
intermediary field.

Then M/K and L/M are both separable.
1



Proof. M/K is clearly separable.
Suppose that α ∈ L. Let f(x) be the minimum polynomial of α

over L and let g(x) be the minimum polynomial over K. Then f(x)
divides g(x). On the other hand, g(x) is separable, that is, g(x) has no
repeated roots, as L/K is separable. Thus f(x) has no repeated roots
and so L/M is separable. �

Lemma 11.5. Let L/K be a field extension, let α ∈ L be algebraic and
let M = K(α) be the intermediary field generated by α. Suppose that
the degree of M/K is d. Let φ : K −→ K ′ be any ring homorphism and
let L′/K ′ be a normal field extension.

Then there are at most d ring homomorphisms ψ : M −→ L′, ex-
tending φ, with equality if and only if α is separable and there is at
least one automorphism extending φ.

Proof. Let m(x) be the minimum polynomial of α. The degree of m(x)
is d. Let m′(x) be the corresponding polynomial in K ′[x]. Then m′(x)
has at most d roots, with equality if and only if α is separable and it
has one root. On the other hand any map ψ extending φ is determined
by its action on α and there is an automorphism carrying α to β if and
only if β is a root of m′(x). �

Proposition 11.6. Let L/K be a finite field extension, let φ : K −→
K ′ be any ring homomorphism and suppose that L′/K ′ is normal.

Then there are at most [L : K] ring homomorphisms ψ : L −→ L′

extending φ with equality if and only if L/K is separable and there is
at least one automorphism extending φ.

Proof. The proof is by induction on [L : K]. If L = K there is nothing
to prove. Otherwise pick α ∈ L − K. Suppose that the degree of
M = K(α)/K is d. By (11.5) there are at most d = [M : K] ring
homomorphisms π : M −→ L′ extending φ. On the other hand, as
[M : K] > 1, by the Tower Law [L : M ] < [L : K], so that by
induction there are at most [L : M ] ring homomorphisms ψ : L −→ L′

extending a given π. Since any ψ extends at least one π, there are at
most [L : K] = [L : M ][M : K] extensions of φ, with equality if and
only if α is separable and, by induction, [L : M ] is separable.

This proves the inequality and that there is equality if L/K is sep-
arable. On the other hand, note that if there is equality, then simply
varying α, we see that every element of L/K is separable, so that L/K
is separable. �

Corollary 11.7. Let L/K be a finite extension and let M be an inter-
mediary extension.

Then L/K is separable if and only if L/M and M/K are separable.
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Proof. By (11.4) it suffices to prove that if L/M and M/K are sepa-
rable, then L/K is separable. Let N/K be a normal closure of L/K.
By (11.6) there are [M : K] ring homomorphisms π : M −→ N , whose
restriction to K is the identity, and for each such π there are then
[L : M ] ring homomorphisms ψ : L −→ N extending π. There are thus
at least [L : K] = [L : M ][M : K] ring homomorphisms ψ : L −→ N
extending the identity. It follows by (11.6) that L/K is separable. �

Corollary 11.8. Let L/K be a finite extension, and suppose that L =
K(α1, α2, . . . , αn).

Then L/K is separable if and only if each αi is separable.

Proof. Let Mi be the intermediary field generated by the first i α’s,
α1, α2, . . . , αi. The result then follows by (11.7) and an obvious induc-
tion. �

Definition 11.9. Let L/K be a field extension.
We say that L/K is Galois if it is normal and separable.

It is easy to give some nice characterisations of finite Galois exten-
sions.

Lemma 11.10. Let L/K be a finite field extension.
Then L/K is Galois if and only if it is the splitting field of a separable

polynomial f(x) ∈ K[x].

Proof. Easy. �

Lemma 11.11. Let L/K be a separable extension, and let N/K be a
normal closure.

Then N/K is Galois.

Proof. Note that the normal closure of a separable field extension L/K
is the splitting field of a separable polynomial, as each irreducible factor
of the polynomial has a root in L. The result follows by (11.10). �

Theorem 11.12. Let L/K be a finite extension.
Then L/K is Galois if and only if there are [L : K] automorphisms

of L/K.

Proof. Suppose that L/K is Galois. Then the result follows by (11.3)
and (11.6).

Now suppose that there are [L : K] automorphisms of L/K. Let
N/K be a normal closure. Then there are at most [L : K] ring homo-
morphisms ψ : L −→ N . It follows that L/K is separable, by (11.6)
and that every ring homomorphism is in fact an automorphism, so that
L/K is normal, by (11.3). �
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Definition 11.13. Let L be a field and let G be a collection of auto-
morphisms of L. The fixed field of G, denoted LG, is the set of all
elements of L which are fixed by every element of G.

Note that if X is a set of automorphisms of L and G is the subgroup
of the group of all functions from L to L generated by X then LX = LG.
So we might as well assume that G is a group, when dealing with fixed
fields.

Lemma 11.14. Let L/M/K be a field extension, let G be a group of
automorphisms of L and let H be a subgroup. Then

(1) G ⊂ Gal(L/LG).
(2) K ⊂ LGal(L/K).
(3) LG ⊂ LH .
(4) Gal(L/M) ⊂ Gal(L/K).

Proof. Easy. �

Let G be a group of automorphisms of L and let K be the fixed field.
Our object is to prove that in fact the two associations,

G −→ LG and M −→ Gal(L/M),

set-up an order reversing correspondence between the subgroups of G
and the intermediary fields L/M/K. The key point will be to establish
that L/K is Galois, that is, we want

[L : K] = |G|.

Definition 11.15. Let R be a ring. R∗ denotes the group of units,
under multiplication.

If R is a field, then R∗ = R− {0}.

Definition 11.16. Let G be a group and let K be a field. A character
is a group homomorphism

G −→ K∗.

Recall that given any set X and an R-module M , the set of all
functions from X to M has the structure of an R-module.

Lemma 11.17. Let G be a group and let K be a field.
Then any set of characters is linearly independent.

Proof. Suppose not. Then we may find characters χ1, χ2, . . . , χn and
scalars a1, a2, . . . , an ∈ K such that

n∑
i=1

aiχi = 0,
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where not all ai are zero. We pick n > 0 minimal with this property.
In particular ai 6= 0 for all i. n 6= 1, as otherwise 0 = a1χ1(1) = a1. As
χ1 6= χn we may find h ∈ G such that χ1(h) 6= χn(h).

We have ∑
i=1

aiχi(g) = 0,

for every g ∈ G. In particular this equation holds with hg in place of
g. It follows that

0 =
∑
i=1

aiχi(hg)

=
∑
i=1

aiχi(h)χi(g).

Now multiply the first equation by χn(h) 6= 0, to get two equations
with the same last term,∑

i=1

aiχi(h)χi(g) = 0∑
i=1

aiχn(h)χi(g) = 0.

If we subtract the second equation from the first we get an equation of
the form ∑

i=1

biχi(g) = 0.

where bi = ai(χi(h)− χn(g)). As this is valid for all g ∈ G, we have∑
i=1

biχi = 0.

By assumption b1 6= 0, so that we have a smaller non-trivial linear
dependence, a contradiction. �

Lemma 11.18. Any set of automorphisms of a field L are linearly
independent.

Proof. Any automorphism φ determines and is determined by the ob-
vious character

χ : L∗ −→ L∗

so that the result is an immediate consequence of (11.17). �

Lemma 11.19. Let L be a field and let X be any set of automorphisms
of L, with fixed field K = LX .

Then
[L : K] ≥ |X|,

where we only require the LHS to be infinite if the RHS is infinite.
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Proof. Suppose not. Then L/K would be finite. Let l1, l2, . . . , lm be
a basis. By assumption we could find σ1, σ2, . . . , σn automorphisms of
L/K with n > m. Consider the system of m× n equations∑

j

σj(li)xj = 0.

As there are n unknowns and m < n equations, there is a non-trivial
solution a1, a2, . . . , an ∈ K (just apply Gaussian elimination). I claim
that ∑

j

ajσj = 0.

Let l ∈ L. Then we may find b1, b2, . . . , bm ∈ K such that

l =
∑
i

bili.

In this case ∑
j

ajσj(l) =
∑
j

ajσ(
∑
i

bili)

=
∑
j

∑
i

ajbiσ(li)

=
∑
i

bi

(∑
j

ajσ(lj)

)
= 0,

which establishes the claim. But this contradicts the fact that any set
of automorphisms is linearly independent. �

Lemma 11.20. Let L be any field and let G be any finite group of
automorphisms of L, with fixed field K.

Then

[L : K] = |G|.
In particular L/K is Galois.

Proof. We have already seen that

[L : K] ≥ |G|.
Suppose that [L : K] > |G|. Suppose that the elements of G are

σ1, σ2, . . . , σm. Then we may find l1, l2, . . . , ln an independent set of
elements of L, with n > m. As the set of equations∑

j

σi(lj)xj = 0,

6



has m equations and n > m unknowns, we may find a non-trivial
solution a1, a2, . . . , an ∈ L. Possibly rearranging, we may assume that
σ1 is the identity. Thus the first equation reads∑

ajlj = 0.

As we are assuming that l1, l2, . . . , ln are independent over K, it follows
that not every aj ∈ K. Amongst all such solutions, we choose one with
the smallest number r of aj non-zero. We may assume that aj = 0 if
and only if j > r > 0. Rescaling we may assume that ar = 1. As not
all aj ∈ K, we may assume that a1 /∈ K. In particular r > 1.

As K is the fixed field of G and a1 /∈ K, we may find an element of
G that does not fix a1, say σ. As the map

G −→ G

given by multiplication on the left by σ is a bijection, it follows that as
σi runs over the elements of G, so does σ ◦ σi. So consider applying σ
to each of the equations above. As σ is a ring homomorphism it follows
that we get a new solution to these equations∑

j

bjσi(lj) = 0,

where bj = σ(aj). By hypothesis b1 6= a1. Multiplying the first set of
equations by b1 and the second set by a1 and subtracting one set from
another, we obtain a solution∑

i

σi(lj)ci = 0,

where cr 6= 0 but c1 = 0. But this contradicts our original choice of
a1, a2, . . . , an. �

7


	11. Counting Automorphisms

