11. Counting Automorphisms

Definition 11.1. Let L/K be a field extension.

An **automorphism of** L/K is simply an automorphism of L which fixes K.

Here, when we say that ϕ fixes K, we mean that the restriction of ϕ to K is the identity, that is, ϕ extends the identity; in other words we require that ϕ fixes every point of K and not just the whole subset.

Definition-Lemma 11.2. Let L/K be a field extension.

The **Galois group of** L/K, denoted Gal(L/K), is the subgroup of the set of all functions from L to L, which are automorphisms over K.

Proof. The only thing to prove is that the composition and inverse of an automorphism over K is an automorphism, which is left as an easy exercise to the reader.

The key issue is to establish that the Galois group has enough elements.

Proposition 11.3. Let L/K be a finite normal extension and let M be an intermediary field.

TFAE

- (1) M/K is normal.
- (2) For every automorphism ϕ of L/K, $\phi(M) \subset M$.
- (3) For every automorphism ϕ of L/K, $\phi(M) = M$.

Proof. Suppose (1) holds. Let ϕ be any automorphism of L/K. Pick $\alpha \in M$ and set $\phi(\alpha) = \beta$. Then β is a root of the minimum polynomial m of α . As M/K is normal, and α is a root of m(x), m(x) splits in M. In particular $\beta \in M$. Thus (1) implies (2).

Suppose that (2) holds and let ϕ be any automorphism of L/K. As L/K is finite, then so is M/K. As ϕ is an automorphism,

$$[\phi(M):K] = [M:K].$$

On the other hand, by hypothesis $\phi(M) \subset M$. So by the Tower Law, $[M:\phi(M)] = 1$. Hence (2) implies (3).

Now suppose that (3) holds. Let f(x) be an irreducible polynomial and let $\alpha \in M$ be a root of f(x). As L/K is normal, f(x) splits in L. Let β be any other root of f(x). Then we may find an automorphism ϕ of L that carries α to β , by (8.8). As $\phi(M) \subset M$, it follows that $\beta \in M$. But then f(x) splits in M. Thus (3) implies (1).

Lemma 11.4. Let L/K be a separable extension and let M/K be an intermediary field.

Then M/K and L/M are both separable.

Proof. M/K is clearly separable.

Suppose that $\alpha \in L$. Let f(x) be the minimum polynomial of α over L and let g(x) be the minimum polynomial over K. Then f(x) divides g(x). On the other hand, g(x) is separable, that is, g(x) has no repeated roots, as L/K is separable. Thus f(x) has no repeated roots and so L/M is separable.

Lemma 11.5. Let L/K be a field extension, let $\alpha \in L$ be algebraic and let $M = K(\alpha)$ be the intermediary field generated by α . Suppose that the degree of M/K is d. Let $\phi: K \longrightarrow K'$ be any ring homorphism and let L'/K' be a normal field extension.

Then there are at most d ring homomorphisms $\psi: M \longrightarrow L'$, extending ϕ , with equality if and only if α is separable and there is at least one automorphism extending ϕ .

Proof. Let m(x) be the minimum polynomial of α . The degree of m(x) is d. Let m'(x) be the corresponding polynomial in K'[x]. Then m'(x) has at most d roots, with equality if and only if α is separable and it has one root. On the other hand any map ψ extending ϕ is determined by its action on α and there is an automorphism carrying α to β if and only if β is a root of m'(x).

Proposition 11.6. Let L/K be a finite field extension, let $\phi: K \longrightarrow K'$ be any ring homomorphism and suppose that L'/K' is normal.

Then there are at most [L : K] ring homomorphisms $\psi : L \longrightarrow L'$ extending ϕ with equality if and only if L/K is separable and there is at least one automorphism extending ϕ .

Proof. The proof is by induction on [L:K]. If L = K there is nothing to prove. Otherwise pick $\alpha \in L - K$. Suppose that the degree of $M = K(\alpha)/K$ is d. By (11.5) there are at most d = [M:K] ring homomorphisms $\pi: M \longrightarrow L'$ extending ϕ . On the other hand, as [M:K] > 1, by the Tower Law [L:M] < [L:K], so that by induction there are at most [L:M] ring homomorphisms $\psi: L \longrightarrow L'$ extending a given π . Since any ψ extends at least one π , there are at most [L:K] = [L:M][M:K] extensions of ϕ , with equality if and only if α is separable and, by induction, [L:M] is separable.

This proves the inequality and that there is equality if L/K is separable. On the other hand, note that if there is equality, then simply varying α , we see that every element of L/K is separable, so that L/K is separable.

Corollary 11.7. Let L/K be a finite extension and let M be an intermediary extension.

Then L/K is separable if and only if L/M and M/K are separable.

Proof. By (11.4) it suffices to prove that if L/M and M/K are separable, then L/K is separable. Let N/K be a normal closure of L/K. By (11.6) there are [M:K] ring homomorphisms $\pi: M \longrightarrow N$, whose restriction to K is the identity, and for each such π there are then [L:M] ring homomorphisms $\psi: L \longrightarrow N$ extending π . There are thus at least [L:K] = [L:M][M:K] ring homomorphisms $\psi: L \longrightarrow N$ extending the identity. It follows by (11.6) that L/K is separable. \Box

Corollary 11.8. Let L/K be a finite extension, and suppose that $L = K(\alpha_1, \alpha_2, \ldots, \alpha_n)$.

Then L/K is separable if and only if each α_i is separable.

Proof. Let M_i be the intermediary field generated by the first $i \alpha$'s, $\alpha_1, \alpha_2, \ldots, \alpha_i$. The result then follows by (11.7) and an obvious induction.

Definition 11.9. Let L/K be a field extension. We say that L/K is **Galois** if it is normal and separable.

It is easy to give some nice characterisations of finite Galois extensions.

Lemma 11.10. Let L/K be a finite field extension.

Then L/K is Galois if and only if it is the splitting field of a separable polynomial $f(x) \in K[x]$.

Proof. Easy.

Lemma 11.11. Let L/K be a separable extension, and let N/K be a normal closure.

Then N/K is Galois.

Proof. Note that the normal closure of a separable field extension L/K is the splitting field of a separable polynomial, as each irreducible factor of the polynomial has a root in L. The result follows by (11.10).

Theorem 11.12. Let L/K be a finite extension.

Then L/K is Galois if and only if there are [L:K] automorphisms of L/K.

Proof. Suppose that L/K is Galois. Then the result follows by (11.3) and (11.6).

Now suppose that there are [L : K] automorphisms of L/K. Let N/K be a normal closure. Then there are at most [L : K] ring homomorphisms $\psi: L \longrightarrow N$. It follows that L/K is separable, by (11.6) and that every ring homomorphism is in fact an automorphism, so that L/K is normal, by (11.3).

Definition 11.13. Let L be a field and let G be a collection of automorphisms of L. The **fixed field** of G, denoted L^G , is the set of all elements of L which are fixed by every element of G.

Note that if X is a set of automorphisms of L and G is the subgroup of the group of all functions from L to L generated by X then $L^X = L^G$. So we might as well assume that G is a group, when dealing with fixed fields.

Lemma 11.14. Let L/M/K be a field extension, let G be a group of automorphisms of L and let H be a subgroup. Then

(1)
$$G \subset \operatorname{Gal}(L/L^G)$$
.
(2) $K \subset L^{\operatorname{Gal}(L/K)}$.
(3) $L^G \subset L^H$.
(4) $\operatorname{Gal}(L/M) \subset \operatorname{Gal}(L/K)$.

Proof. Easy.

Let G be a group of automorphisms of L and let K be the fixed field. Our object is to prove that in fact the two associations,

$$G \longrightarrow L^G$$
 and $M \longrightarrow \operatorname{Gal}(L/M)$,

set-up an order reversing correspondence between the subgroups of G and the intermediary fields L/M/K. The key point will be to establish that L/K is Galois, that is, we want

$$[L:K] = |G|.$$

Definition 11.15. Let R be a ring. R^* denotes the group of units, under multiplication.

If R is a field, then $R^* = R - \{0\}$.

Definition 11.16. Let G be a group and let K be a field. A character is a group homomorphism

$$G \longrightarrow K^*$$
.

Recall that given any set X and an R-module M, the set of all functions from X to M has the structure of an R-module.

Lemma 11.17. Let G be a group and let K be a field. Then any set of characters is linearly independent.

Proof. Suppose not. Then we may find characters $\chi_1, \chi_2, \ldots, \chi_n$ and scalars $a_1, a_2, \ldots, a_n \in K$ such that

$$\sum_{i=1}^{n} a_i \chi_i = 0,$$

where not all a_i are zero. We pick n > 0 minimal with this property. In particular $a_i \neq 0$ for all i. $n \neq 1$, as otherwise $0 = a_1\chi_1(1) = a_1$. As $\chi_1 \neq \chi_n$ we may find $h \in G$ such that $\chi_1(h) \neq \chi_n(h)$.

We have

$$\sum_{i=1} a_i \chi_i(g) = 0$$

for every $g \in G$. In particular this equation holds with hg in place of g. It follows that

$$0 = \sum_{i=1}^{n} a_i \chi_i(hg)$$
$$= \sum_{i=1}^{n} a_i \chi_i(h) \chi_i(g).$$

Now multiply the first equation by $\chi_n(h) \neq 0$, to get two equations with the same last term,

$$\sum_{i=1}^{n} a_i \chi_i(h) \chi_i(g) = 0$$
$$\sum_{i=1}^{n} a_i \chi_n(h) \chi_i(g) = 0.$$

If we subtract the second equation from the first we get an equation of the form

$$\sum_{i=1} b_i \chi_i(g) = 0.$$

where $b_i = a_i(\chi_i(h) - \chi_n(g))$. As this is valid for all $g \in G$, we have

$$\sum_{i=1} b_i \chi_i = 0$$

By assumption $b_1 \neq 0$, so that we have a smaller non-trivial linear dependence, a contradiction.

Lemma 11.18. Any set of automorphisms of a field L are linearly independent.

Proof. Any automorphism ϕ determines and is determined by the obvious character

$$\chi\colon L^*\longrightarrow L^*$$

so that the result is an immediate consequence of (11.17).

Lemma 11.19. Let L be a field and let X be any set of automorphisms of L, with fixed field $K = L^X$.

Then

$[L:K] \ge |X|,$

where we only require the LHS to be infinite if the RHS is infinite.

Proof. Suppose not. Then L/K would be finite. Let l_1, l_2, \ldots, l_m be a basis. By assumption we could find $\sigma_1, \sigma_2, \ldots, \sigma_n$ automorphisms of L/K with n > m. Consider the system of $m \times n$ equations

$$\sum_{j} \sigma_j(l_i) x_j = 0.$$

As there are n unknowns and m < n equations, there is a non-trivial solution $a_1, a_2, \ldots, a_n \in K$ (just apply Gaussian elimination). I claim that

$$\sum_{j} a_j \sigma_j = 0.$$

Let $l \in L$. Then we may find $b_1, b_2, \ldots, b_m \in K$ such that

$$l = \sum_{i} b_i l_i.$$

In this case

$$\sum_{j} a_{j}\sigma_{j}(l) = \sum_{j} a_{j}\sigma(\sum_{i} b_{i}l_{i})$$
$$= \sum_{j} \sum_{i} a_{j}b_{i}\sigma(l_{i})$$
$$= \sum_{i} b_{i}\left(\sum_{j} a_{j}\sigma(l_{j})\right)$$
$$= 0,$$

which establishes the claim. But this contradicts the fact that any set of automorphisms is linearly independent. $\hfill \Box$

Lemma 11.20. Let L be any field and let G be any finite group of automorphisms of L, with fixed field K.

Then

$$[L:K] = |G|.$$

In particular L/K is Galois.

Proof. We have already seen that

$$[L:K] \ge |G|.$$

Suppose that [L:K] > |G|. Suppose that the elements of G are $\sigma_1, \sigma_2, \ldots, \sigma_m$. Then we may find l_1, l_2, \ldots, l_n an independent set of elements of L, with n > m. As the set of equations

$$\sum_{j} \sigma_i(l_j) x_j = 0,$$

has m equations and n > m unknowns, we may find a non-trivial solution $a_1, a_2, \ldots, a_n \in L$. Possibly rearranging, we may assume that σ_1 is the identity. Thus the first equation reads

$$\sum a_j l_j = 0.$$

As we are assuming that l_1, l_2, \ldots, l_n are independent over K, it follows that not every $a_j \in K$. Amongst all such solutions, we choose one with the smallest number r of a_j non-zero. We may assume that $a_j = 0$ if and only if j > r > 0. Rescaling we may assume that $a_r = 1$. As not all $a_j \in K$, we may assume that $a_1 \notin K$. In particular r > 1.

As K is the fixed field of G and $a_1 \notin K$, we may find an element of G that does not fix a_1 , say σ . As the map

$$G \longrightarrow G$$

given by multiplication on the left by σ is a bijection, it follows that as σ_i runs over the elements of G, so does $\sigma \circ \sigma_i$. So consider applying σ to each of the equations above. As σ is a ring homomorphism it follows that we get a new solution to these equations

$$\sum_{j} b_j \sigma_i(l_j) = 0,$$

where $b_j = \sigma(a_j)$. By hypothesis $b_1 \neq a_1$. Multiplying the first set of equations by b_1 and the second set by a_1 and subtracting one set from another, we obtain a solution

$$\sum_{i} \sigma_i(l_j)c_i = 0,$$

where $c_r \neq 0$ but $c_1 = 0$. But this contradicts our original choice of a_1, a_2, \ldots, a_n .