
15. Cubics, Quartics and Polygons

It is interesting to chase through the arguments of §14 and see how
this affects solving polynomial equations in specific examples. We make
a global assumption that the characteristic is neither 2 nor 3.

Lemma 15.1. Let f(x) ∈ K[x] be a separable polynomial of degree n.
Then the Galois group is a subgroup of Sn, the permutations of the

roots.

Proof. Clear, since any automorphism of a splitting field is determined
by its action on the roots. �

Now An ⊂ Sn and so H = G∩An ⊂ G is either equal to G or of index
two. If we have the latter, by the Fundamental Theorem, it follows that
there is a quadratic extension M/K. Since this is universally true, no
matter which field we start with, we might well expect that there is
some universal formula which determines M .

Definition 15.2. Let f(x) ∈ K[x] be a polynomial, in which f(x) splits
as

f(x) = λ(x− α1)(x− α2) . . . (x− α).

The discriminant ∆ is the square of the product

δ =
∏
i<j

(αi − αj).

Lemma 15.3. Let f(x) ∈ K[x] be a polynomial with splitting field
L/K and discriminant ∆ ∈ L.

Then ∆ ∈ K and ∆ = 0 if and only if f(x) has a repeated root.
Moreover if ∆ 6= 0 then x2 −∆ splits in K[x] if and only if the Galois
group is a subgroup of An.

Proof. The second statement is immediate. If ∆ 6= 0, then f(x) is
surely separable and so L/K is Galois.

We already know that δ is invariant under the action of An and that
an arbitrary element of Sn fixes δ up to sign. Thus ∆ = δ2 lies in the
fixed field of G, which by the Fundamental Theorem of Galois Theory
is equal to K.

Finally x2 − ∆ splits in K if and only if δ ∈ K if and only if δ is
invariant under G if and only if G ⊂ An. �

We turn to the calculation of the discriminant.
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Definition 15.4. Let K be a field and let λ1, λ2, . . . , λn be n scalars.
The determinant

∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1
λ1 λ2 λ3 . . . λn
λ21 λ22 λ23 . . . λ2n
...

...
...

. . .
...

λn−1
1 λn−1

2 λn−1
2 . . . λn−1

n

∣∣∣∣∣∣∣∣∣∣
is known as the Vandermonde determinant.

Lemma 15.5. The Vandermonde determinant is equal to
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=
∏
i<j

(λi − λj).

Proof. First note that we may replace λi by the variable xi. In this
case both sides are polynomials in x1, x2, . . . , xn and so both sides are
elements of the ring R = K[x1, x2, . . . , xn]. By unique factorisation
and considerations of degree it suffices to check that xi− xj is a factor
of the LHS and that the constant coefficients match up. The latter is
an easy check.

To check that xi − xj divides the LHS, it suffices to check that the
LHS vanishes when λi = λj. But this is clear, as then we are taking
the determinant of a matrix with two equal columns. �

Remark 15.6. The Vandermonde determinant provides a slick way of
checking that An is a normal subgroup. The key point to check is that a
transposition, acting on δ, switches the sign. But this is clear, looking
at the LHS, since the determinant changes sign, when one switches two
columns.
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∆ = δ2

= δ · δ

=
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where we used the fact that taking transposes does not affect the de-
terminant.

The last product can be computed by first multiplying the matrices
together and then computing the determinant, as

det(AB) = detA detB.

Rather than write down the general formula, it is perhaps more
interesting to compute in some relatively simple cases.

If n = 2 we get(
1 1
α β

)(
1 α
1 β

)
=

(
2 α + β

α + β α2 + β2

)
.

Suppose

f(x) = x2 + ax+ b = (x− α)(x− β).

Multiplying out we get

(x− α)(x− β) = x2 − (α + β)x+ αβ

= x2 + ax+ b,

so that comparing coefficients, we have

α + β = −a and αβ = b.
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a2 = (α + β)2

= α2 + β2 + 2αβ

= (α2 + β2) + 2b.

So
α2 + β2 = a2 − 2b.

Thus ∆ is equal to∣∣∣∣ 2 −a
−a a2 − 2b

∣∣∣∣ = 2(a2 − 2b)− a2 = a2 − 4b,

which should look familiar.
One can make a similar computation for cubics. In this case we have

Proposition 15.7. Let f(x) ∈ K[x] be an irreducible cubic.
Then the Galois group is isomorphic to A3 if x2−∆ splits in K and

is equal to S3 otherwise.

Proof. The Galois group is a transitive subgroup of S3, of which there
are only two, A3 and S3. But G ⊂ A3 if and only if x2 − ∆ splits in
K. �

This gives us a method to solve the cubic. First compute the inter-
mediate field M corresponding to A3, that is, adjoin the square root of
∆. The resulting field extension L/M has Galois group isomorphic to
Z3, thus there ought to be an expression involving δ and the coefficients
of the cubic, for which we need to take a cube root.

We now apply a similar technique for quartics.

Proposition 15.8. Let f(x) ∈ K[x] be an irreducible quartic.
Then the Galois group is isomorphic to one of

(1) S4,
(2) D4,
(3) Z4

(4) A4, or
(5) V = {e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}.

The latter two occur if and only if x2 −∆ splits in K.

Proof. These are only the only transitive subgroups of S4. �

Once again, this ought to yield a method to solve the quartic. First
adjoin δ, the square root of ∆, to reduce the Galois group to A4. Now
use the fact that V ⊂ A4 is a normal subgroup, with quotient Z3, to
find a further field extension, that is obtained by adjoining appropriate
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cube roots. This reduces the Galois group to Z2 × Z2. The remaining
field extension is obtained by adjoining successive square roots.

Thus the general form of a solution to a quartic equation, involves
taking square roots and cube roots only. In practice determining these
formulas is somewhat involved and uninspiring. A much more inter-
esting question is to determine those regular polygons which are con-
structible.

Lemma 15.9. The regular n-gon is constructible if and only if the
angle 2π

n
is constructible.

Proof. Suppose the regular n-gon is constructible. Then the angle sub-
tended at the centre of the n-gon (which is surely constructible) by two
adjacent vertices is 2π

n
.

Conversely suppose we can construct the angle 2π
n

. Then we can
construct the angles

a
2π

n
.

Place points on the unit circle with the above angles and simply join
up the points. �

Lemma 15.10. If the regular polygon with nm sides is constructible
then the regular polygons with n sides and m sides are constructible.
Further if m and n are coprime, the converse holds.

Proof. One direction is clear. If you can construct the regular polygon
with nm sides, then you can certainly construct the regular polygon
with n and m sides.

Now suppose that m and n are coprime. Then there are integers a
and b such that

1 = am+ bn,

so that
1

mn
=
a

n
+

b

m
.

By assumption we can construct the angles

2π

n
and

2π

m
,

and so we can construct

2π

mn
= a

2π

n
− b2π

m
.

But then the mn-gon is contructible. �
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Using (15.10), to answer the question of which n-gons are constructible,
we only need to consider the case when n is a power of a prime. Since
we can bisect any angle, we can certainly construct any 2k-gon.

Now constructing the angle 2π/n is basically the same as showing
that a primitive nth root of unity has degree a power of two over Q.

Lemma 15.11. The angle θ = 2π/n is contructible if and only if the
degree of the mininum polynomial of ω = e2πi/n is a power of two.

Proof. The angle θ is constructible if and only if the lengths α = cos θ
and sin θ are constructible. So if the angle θ is constructible, then the
degree of the minimum polynomial of α is a power of two. Now

ω + ω̄ = 2α.

As ω̄ = ω−1, we have

ω2 − 2αω + 1 = 0.

So ω is a root of the polynomial

x2 − 2αx+ 1 ∈ Q(α)[x].

Thus the degree of ω over Q(α) is either one or two. Now apply the
Tower Law. �

Note that ω is a primitive root of unity.

Lemma 15.12. Let ω be a primitive pk-th root of unity, where p is an
odd prime.

If ω has degree a power of two over Q then k = 1 and p = 2s + 1,
for some s.

Proof.

Φp(x) = xp−1 + xp−2 + · · ·+ 1.

So the degree of ω, in the case k = 1, is

p− 1.

As this is a power of two, we have p = 2s + 1.
Now if k > 1, we may as well assume that k = 2. Now

xp
2 − 1 = Φ1(x)Φp(x)Φp2(x).

So

p2 = 1 + (p− 1) + d,

where d is the degree of ω. Thus d = p2 − p = p(p− 1), which is never
a power of two. �
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Lemma 15.13. Let p be a prime of the form

2s + 1.

Then s is a power of two.

Proof. Suppose not. Then we could write s = ab, where a is odd. Now

xa + 1 = (x+ 1)(xa−1 − xa−2 + . . . ).

But then
p = (2b)a + 1,

would not be prime. �

Theorem 15.14. The regular n-gon is constructible if and only if

n = 2kp1, p2, . . . , pm,

where p1, p2, . . . , pm are distinct odd primes of the form 22k + 1.

Proof. By what we have already proved, it suffices to consider the case
n is an odd prime, of the form 22k + 1, and we only need to prove that
the corresponding angle is constructible.

Consider the Galois group G of xn − 1. This is abelian, isomorphic
to U

22k
. The order of this group is

22k − 22k−1 = 22k−1,

a power of two. Thus G is a 2-group and we can filter a splitting field
Q(ω)/Q by intermediary fields, all of which are quadratic extensions
of the previous field. Thus we can do the same for the subfields,

Q(cos θ) and Q(sin θ).

But then cos θ and sin θ are constructible, which is what we want. �

7


	15. Cubics, Quartics and Polygons

