5. Finitely Generated Modules over a PID

We want to give a complete classification of finitely generated modules over a PID. Recall that a finitely generated module is a quotient of R^{n}, a free module. Let K be the kernel. Then M is isomorphic to R^{n} / K, by the Isomorphism Theorem.

Now K is a submodule of a Noetherian module; hence K is finitely generated. Pick a finite set of generators of K (it turns out that K is also isomorphic to a free module. Thus K is isomorphic to R^{m}, for some m, and in fact $m \leq n$).

As there is a map $R^{m} \longrightarrow K$, by composition we get an R-linear map

$$
\phi: R^{m} \longrightarrow R^{n} .
$$

Since K is determined by ϕ, M is determined by ϕ. The crucial piece of information is to determine ϕ.

As this map is R-linear, just as in the case of vector spaces, everything is determined by the action of ϕ on the standard generators $f_{1}, f_{2}, \ldots, f_{m}$. Suppose that we expand $\phi\left(f_{i}\right)$ as a linear combination of the standard generators $e_{1}, e_{2}, \ldots, e_{n}$ of R^{n}.

$$
\phi\left(f_{i}\right)=\sum_{j} a_{i j} e_{j} .
$$

In this case we get a matrix

$$
A=\left(a_{i j}\right) \in M_{n, m}(R) .
$$

The point is to choose different bases of R^{m} and R^{n} so that the representation of ϕ by A is in a better form. Note the following:

Lemma 5.1. Let $r_{1}, r_{2}, \ldots, r_{n}$ be (respectively free) generators of M. Then so are $s_{1}, s_{2}, \ldots, s_{n}$, where we apply one of:
(1) we multiply one of the r_{i} by a unit,
(2) we switch the position of r_{i} and r_{j},
(3) we replace r_{i} by $r_{i}+a r_{j}$, where a is any scalar.

Proof. Easy.
At the level of matrices, (5.1) informs us that we are free to perform anyone of the elementary operations on matrices, namely multiplying a row (respectively column) by a unit, switching two rows (respectively columns) and taking a row and adding an arbitrary multiple of another row (respectively column).

Proposition 5.2. Let A be a matrix with entries in a PID R.
Then we can find two invertible square matrices B and C in R such that the matrix BAC has the following form:

The only non-zero entries are on the diagonal and each non-zero entry divides the next one in the list.

If R is a Euclidean domain then we can put A into the given form after a sequence of elementary row and column operations.

Proof. This is much easier than it looks. Suppose that the gcd of the entries of A is d. As R is a PID, d is a linear combination of the entries of A.

Suppose that one of the entries of A is d. By permuting the rows and columns, we may assume that d is at the top left hand corner. As d is the gcd, it divides every entry of A. By row and column reduction we reduce to the case that the only non-zero entry in the first column and row is the entry d at the top left hand corner. Let B be the matrix obtained by striking out the first row and column. Then every element of B is divisible by d and we are done by induction on m and n.

So we have to show that we can manipulate A until one of the entries is d. As R is a PID, d is linear combination of the entries of A. By induction on the number of entries, we may assume that

$$
A=\binom{a}{b}
$$

If R is a Euclidean domain then we can put A into the given form after a sequence of row operations; just apply Euclid's algorithm.

In the general case, note that we may find x and y such that

$$
d=x a+y b .
$$

Note that the gcd of x and y must be 1 . Therefore we may find u and v such that

$$
1=u x+v y .
$$

Let

$$
B=\left(\begin{array}{cc}
x & y \\
-v & u
\end{array}\right) .
$$

Note that the determinant of B is

$$
x u+y v=1 .
$$

Thus B is invertible, with inverse

$$
\left(\begin{array}{cc}
u & -y \\
v & x
\end{array}\right)
$$

On the other hand,

$$
B A=\binom{d}{-v a+u b}
$$

Corollary 5.3. Let M be a module over a PID R.
Then M is isomorphic to $F \oplus T$, where $F \simeq R^{r}$ is a free module and T is isomorphic to either,

$$
\begin{equation*}
R /\left\langle d_{1}\right\rangle \oplus R /\left\langle d_{2}\right\rangle \oplus \cdots \oplus R /\left\langle d_{n}\right\rangle \tag{1}
\end{equation*}
$$

where d_{i} divides d_{i+1}, or

$$
\begin{equation*}
R /\left\langle p_{1}^{m_{1}}\right\rangle \oplus R /\left\langle p_{2}^{m_{2}}\right\rangle \oplus \cdots \oplus R /\left\langle p_{n}^{m_{n}}\right\rangle . \tag{2}
\end{equation*}
$$

where p_{i} is a prime.
The integer r and $d_{1}, d_{2}, \ldots, d_{n}$ are invariant, up to associates. r is called the rank.

Proof. By the Chinese Remainder Theorem it suffices to prove the first classification result. By assumption M is isomorphic to a quotient of R^{n} by an image of R^{m}. By (5.2) we may assume the corresponding matrix has the given simple form. Now note that the last r rows that contain only zero entries, corresponds to the free part, and there is an obvious corrrespondence between the non-zero rows and the direct summands of the torsion part.

Now suppose that

$$
F \oplus T \simeq F^{\prime} \oplus T^{\prime},
$$

where F and F^{\prime} are free and T and T^{\prime} are not. Suppose that we tensor this with the field of fractions K of R. Note that we have

$$
R /\langle a\rangle \underset{R}{\otimes} K= \begin{cases}K & \text { if } a=0 \\ 0 & \text { otherwise }\end{cases}
$$

Indeed if $a=0$ then we have $R \otimes K=K$. On the other hand, note that the annihilator of $R /\langle a\rangle \stackrel{R}{\text { is }}\langle a\rangle$. By extension of scalars, $R /\langle a\rangle \underset{R}{\otimes} K$ is a vector space over K. The only vector space with nontrivial annihilator is the zero vector space.

Since tensor product commutes with direct sum, we get that

$$
K^{r} \simeq K^{r^{\prime}}
$$

Thus the rank $r=r^{\prime}$ is nothing more than the dimension of the K vector space $M \otimes_{R} K$.

Note that the annihilator of T is the intersection of the ideals

$$
\bigcap_{i=1}^{n}\left\langle d_{i}\right\rangle=\left\langle d_{n}\right\rangle .
$$

By assumption we may find R-linear maps

$$
f: F \oplus T \longrightarrow F^{\prime} \oplus T^{\prime} \quad \text { and } \quad g: F^{\prime} \oplus T^{\prime} \longrightarrow F \oplus T,
$$

which are inverse to each other. Consider the composition of the natural inclusion $T \longrightarrow F \oplus T, f$ and the projection onto F^{\prime}. Since the annihilator of T is non-trivial, the image has non-trivial annihilator. But then the image is zero. It follows that f and g induce isomorphisms $T \simeq T^{\prime}$.

Since the annihilator of T is $\left\langle d_{n}\right\rangle$ it follows that

$$
\left\langle d_{n}\right\rangle=\left\langle d_{n^{\prime}}^{\prime}\right\rangle .
$$

Thus d_{n} and $d_{n^{\prime}}^{\prime}$ are associates.
We may write $T=T_{0} \oplus T_{1}$ and $T^{\prime}=T_{0}^{\prime} \oplus T_{1}^{\prime}$, where T_{1} is the direct sum of all cyclic factors with annihilator $\left\langle d_{n}\right\rangle$, and T_{0} is the direct sum of the other cyclic factors. Note that the annihilator of T_{0} is bigger than the annihilator $\left\langle d_{n}\right\rangle$ of T_{1} and that the annihilators of T_{1} and T_{1}^{\prime} are equal. Note that

$$
T_{1} \simeq\left(\frac{R}{\left\langle d_{n}\right\rangle}\right)^{a}
$$

for some integer a.
Let $0 \leq m \leq n$ be the largest integer such that d_{m} and d_{n} are not associates. Pick a prime factor p of d_{n} / d_{m}. Let $d=d_{n} / p$ and let

$$
M_{0} \subset M
$$

be the submodule of all elements of M with annihilator $\langle d\rangle$. Note that

$$
M=T_{0}+p T_{1}=T_{0}^{\prime}+p T_{1}^{\prime}
$$

Since

$$
\frac{R}{\left\langle d_{n}\right\rangle} / \frac{\langle p\rangle}{\left\langle d_{n}\right\rangle} \simeq \frac{R}{\langle p\rangle}
$$

we have

$$
\frac{M}{M_{0}} \simeq\left(\frac{R}{\langle p\rangle}\right)^{a} .
$$

As the LHS is naturally a vector space over the field $K=\frac{R}{\langle p\rangle}$, we have

$$
a=\operatorname{dim}_{K} \frac{M}{M_{0}} .
$$

Thus $a=a^{\prime}$.
On the other hand, by Noetherian induction, $T_{0}+p T_{1}$ and $T_{0}^{\prime}+p T_{1}^{\prime}$ have the same cyclic factors. Thus T_{0} and T_{1} have the same cyclic factors.

One special case deserves attention:

Corollary 5.4. Let G be a finitely generated abelian group.
Then G is isomorphic to $\mathbb{Z}^{r} \times T$, where T is isomorphic to

$$
\begin{equation*}
\mathbb{Z}_{d_{1}} \times \mathbb{Z}_{d_{2}} \times \cdots \times \mathbb{Z}_{d_{n}} \tag{1}
\end{equation*}
$$

where $d_{1}, d_{2}, \ldots, d_{n}$ are positive integers and d_{i} divides d_{i+1}, or (2)

$$
\mathbb{Z}_{p_{1}^{m_{1}}} \times \mathbb{Z}_{p_{2}^{m_{2}}} \times \cdots \times \mathbb{Z}_{p_{n}^{m_{n}}}
$$

where $p_{1}, p_{2}, \ldots, p_{n}$ are primes.
Really the best way to illustrate the proof of these results, which are not hard, is to illustrate the methods by an example. Suppose we are given

$$
\left(\begin{array}{cccc}
-58 & 4 & 65 & 1 \\
4 & 2 & 1 & -1 \\
-32 & 2 & 34 & 2 \\
-26 & 2 & 31 & -1 \\
-1 & 1 & 2 & 1
\end{array}\right)
$$

This represents a \mathbb{Z}-linear map

$$
\mathbb{Z}^{4} \longrightarrow \mathbb{Z}^{5}
$$

in the standard way. The gcd is 1 . Thus we first switch the first and fourth columns.

$$
\left(\begin{array}{cccc}
1 & 4 & 65 & -58 \\
-1 & 2 & 1 & 4 \\
2 & 2 & 34 & -32 \\
-1 & 2 & 31 & -26 \\
1 & 1 & 2 & -1
\end{array}\right) .
$$

We could stop swapping here, but in fact it is better to switch the first and last row

$$
\left(\begin{array}{cccc}
1 & 1 & 2 & -1 \\
-1 & 2 & 1 & 4 \\
2 & 2 & 34 & -32 \\
-1 & 2 & 31 & -26 \\
1 & 4 & 65 & -58
\end{array}\right) .
$$

As we now have a 1 in the first row, we can now eliminate 1,2 and -1 from the first row, a la Gaussian elimination, to get

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 3 & 3 & 3 \\
2 & 0 & 30 & -30 \\
-1 & 3 & 33 & -27 \\
1 & 3 & 63 & -57
\end{array}\right) .
$$

Now eliminate the entries in the first column.

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 3 & 3 & 3 \\
0 & 0 & 30 & -30 \\
0 & 3 & 33 & -27 \\
0 & 3 & 63 & -57
\end{array}\right) .
$$

Now eliminate as before,

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 30 & -30 \\
0 & 3 & 30 & -30 \\
0 & 3 & 60 & -60
\end{array}\right),
$$

so that we get

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 30 & -30 \\
0 & 0 & 30 & -30 \\
0 & 0 & 60 & -60
\end{array}\right) .
$$

Now eliminate again

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 30 & 0 \\
0 & 0 & 30 & 0 \\
0 & 0 & 60 & 0
\end{array}\right),
$$

so that we get

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 30 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

It follows then that we have
$(\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}) /(\mathbb{Z} \oplus 3 \mathbb{Z} \oplus 30 \mathbb{Z}) \simeq \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{30} \simeq \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_{3} \times \mathbb{Z}_{30}$.
The free part is $\mathbb{Z} \times \mathbb{Z}$ and the torsion part is $\mathbb{Z}_{3} \times \mathbb{Z}_{30} \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times$ $\mathbb{Z}_{3} \times \mathbb{Z}_{5}$. In this case the rank is 2 .

