
5. Finitely Generated Modules over a PID

We want to give a complete classification of finitely generated mod-
ules over a PID. Recall that a finitely generated module is a quotient
of Rn, a free module. Let K be the kernel. Then M is isomorphic to
Rn/K, by the Isomorphism Theorem.

Now K is a submodule of a Noetherian module; hence K is finitely
generated. Pick a finite set of generators of K (it turns out that K
is also isomorphic to a free module. Thus K is isomorphic to Rm, for
some m, and in fact m ≤ n).

As there is a map Rm −→ K, by composition we get an R-linear
map

φ : Rm −→ Rn.

Since K is determined by φ, M is determined by φ. The crucial piece
of information is to determine φ.

As this map is R-linear, just as in the case of vector spaces, ev-
erything is determined by the action of φ on the standard generators
f1, f2, . . . , fm. Suppose that we expand φ(fi) as a linear combination
of the standard generators e1, e2, . . . , en of Rn.

φ(fi) =
∑
j

aijej.

In this case we get a matrix

A = (aij) ∈Mn,m(R).

The point is to choose different bases of Rm and Rn so that the
representation of φ by A is in a better form. Note the following:

Lemma 5.1. Let r1, r2, . . . , rn be (respectively free) generators of M .
Then so are s1, s2, . . . , sn, where we apply one of:

(1) we multiply one of the ri by a unit,
(2) we switch the position of ri and rj,
(3) we replace ri by ri + arj, where a is any scalar.

Proof. Easy. �

At the level of matrices, (5.1) informs us that we are free to perform
anyone of the elementary operations on matrices, namely multiplying
a row (respectively column) by a unit, switching two rows (respectively
columns) and taking a row and adding an arbitrary multiple of another
row (respectively column).

Proposition 5.2. Let A be a matrix with entries in a PID R.
Then we can find two invertible square matrices B and C in R such

that the matrix BAC has the following form:
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The only non-zero entries are on the diagonal and each non-zero
entry divides the next one in the list.

If R is a Euclidean domain then we can put A into the given form
after a sequence of elementary row and column operations.

Proof. This is much easier than it looks. Suppose that the gcd of the
entries of A is d. As R is a PID, d is a linear combination of the entries
of A.

Suppose that one of the entries of A is d. By permuting the rows
and columns, we may assume that d is at the top left hand corner. As
d is the gcd, it divides every entry of A. By row and column reduction
we reduce to the case that the only non-zero entry in the first column
and row is the entry d at the top left hand corner. Let B be the matrix
obtained by striking out the first row and column. Then every element
of B is divisible by d and we are done by induction on m and n.

So we have to show that we can manipulate A until one of the entries
is d. As R is a PID, d is linear combination of the entries of A. By
induction on the number of entries, we may assume that

A =

(
a
b

)
.

If R is a Euclidean domain then we can put A into the given form after
a sequence of row operations; just apply Euclid’s algorithm.

In the general case, note that we may find x and y such that

d = xa+ yb.

Note that the gcd of x and y must be 1. Therefore we may find u and
v such that

1 = ux+ vy.

Let

B =

(
x y
−v u

)
.

Note that the determinant of B is

xu+ yv = 1.

Thus B is invertible, with inverse(
u −y
v x

)
.

On the other hand,

BA =

(
d

−va+ ub

)
. �
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Corollary 5.3. Let M be a module over a PID R.
Then M is isomorphic to F ⊕T , where F ' Rr is a free module and

T is isomorphic to either,

(1)

R/〈d1〉 ⊕R/〈d2〉 ⊕ · · · ⊕R/〈dn〉.
where di divides di+1, or

(2)

R/〈pm1
1 〉 ⊕R/〈pm2

2 〉 ⊕ · · · ⊕R/〈pmn
n 〉.

where pi is a prime.

The integer r and d1, d2, . . . , dn are invariant, up to associates. r is
called the rank.

Proof. By the Chinese Remainder Theorem it suffices to prove the first
classification result. By assumption M is isomorphic to a quotient of
Rn by an image of Rm. By (5.2) we may assume the corresponding
matrix has the given simple form. Now note that the last r rows that
contain only zero entries, corresponds to the free part, and there is
an obvious corrrespondence between the non-zero rows and the direct
summands of the torsion part.

Now suppose that

F ⊕ T ' F ′ ⊕ T ′,

where F and F ′ are free and T and T ′ are not. Suppose that we tensor
this with the field of fractions K of R. Note that we have

R/〈a〉 ⊗
R
K =

{
K if a = 0

0 otherwise.

Indeed if a = 0 then we have R ⊗
R
K = K. On the other hand,

note that the annihilator of R/〈a〉 is 〈a〉. By extension of scalars,
R/〈a〉 ⊗

R
K is a vector space over K. The only vector space with non-

trivial annihilator is the zero vector space.
Since tensor product commutes with direct sum, we get that

Kr ' Kr′ .

Thus the rank r = r′ is nothing more than the dimension of the K-
vector space M ⊗

R
K.

Note that the annihilator of T is the intersection of the ideals
n⋂

i=1

〈di〉 = 〈dn〉.
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By assumption we may find R-linear maps

f : F ⊕ T −→ F ′ ⊕ T ′ and g : F ′ ⊕ T ′ −→ F ⊕ T,
which are inverse to each other. Consider the composition of the nat-
ural inclusion T −→ F ⊕ T , f and the projection onto F ′. Since the
annihilator of T is non-trivial, the image has non-trivial annihilator.
But then the image is zero. It follows that f and g induce isomorphisms
T ' T ′.

Since the annihilator of T is 〈dn〉 it follows that

〈dn〉 = 〈d′n′〉.
Thus dn and d′n′ are associates.

We may write T = T0 ⊕ T1 and T ′ = T ′
0 ⊕ T ′

1, where T1 is the direct
sum of all cyclic factors with annihilator 〈dn〉, and T0 is the direct sum
of the other cyclic factors. Note that the annihilator of T0 is bigger
than the annihilator 〈dn〉 of T1 and that the annihilators of T1 and T ′

1

are equal. Note that

T1 '
(

R

〈dn〉

)a

,

for some integer a.
Let 0 ≤ m ≤ n be the largest integer such that dm and dn are not

associates. Pick a prime factor p of dn/dm. Let d = dn/p and let

M0 ⊂M

be the submodule of all elements of M with annihilator 〈d〉. Note that

M = T0 + pT1 = T ′
0 + pT ′

1.

Since
R

〈dn〉
/
〈p〉
〈dn〉

' R

〈p〉
we have

M

M0

'
(
R

〈p〉

)a

.

As the LHS is naturally a vector space over the field K = R
〈p〉 , we have

a = dimK
M

M0

.

Thus a = a′.
On the other hand, by Noetherian induction, T0 + pT1 and T ′

0 + pT ′
1

have the same cyclic factors. Thus T0 and T1 have the same cyclic
factors. �

One special case deserves attention:
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Corollary 5.4. Let G be a finitely generated abelian group.
Then G is isomorphic to Zr × T , where T is isomorphic to

(1)
Zd1 × Zd2 × · · · × Zdn ,

where d1, d2, . . . , dn are positive integers and di divides di+1, or
(2)

Zp
m1
1
× Zp

m2
2
× · · · × Zpmn

n
.

where p1, p2, . . . , pn are primes.

Really the best way to illustrate the proof of these results, which are
not hard, is to illustrate the methods by an example. Suppose we are
given 

−58 4 65 1
4 2 1 −1
−32 2 34 2
−26 2 31 −1
−1 1 2 1

 .

This represents a Z-linear map

Z4 −→ Z5,

in the standard way. The gcd is 1. Thus we first switch the first and
fourth columns. 

1 4 65 −58
−1 2 1 4
2 2 34 −32
−1 2 31 −26
1 1 2 −1

 .

We could stop swapping here, but in fact it is better to switch the
first and last row 

1 1 2 −1
−1 2 1 4
2 2 34 −32
−1 2 31 −26
1 4 65 −58

 .

As we now have a 1 in the first row, we can now eliminate 1, 2 and
−1 from the first row, a la Gaussian elimination, to get

1 0 0 0
−1 3 3 3
2 0 30 −30
−1 3 33 −27
1 3 63 −57

 .
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Now eliminate the entries in the first column.
1 0 0 0
0 3 3 3
0 0 30 −30
0 3 33 −27
0 3 63 −57

 .

Now eliminate as before,
1 0 0 0
0 3 0 0
0 0 30 −30
0 3 30 −30
0 3 60 −60

 ,

so that we get 
1 0 0 0
0 3 0 0
0 0 30 −30
0 0 30 −30
0 0 60 −60

 .

Now eliminate again 
1 0 0 0
0 3 0 0
0 0 30 0
0 0 30 0
0 0 60 0

 ,

so that we get 
1 0 0 0
0 3 0 0
0 0 30 0
0 0 0 0
0 0 0 0

 .

It follows then that we have

(Z⊕Z⊕Z⊕Z⊕Z)/(Z⊕3Z⊕30Z) ' Z⊕Z⊕Z3⊕Z30 ' Z×Z×Z3×Z30.

The free part is Z× Z and the torsion part is Z3 × Z30 ' Z2 × Z3 ×
Z3 × Z5. In this case the rank is 2.
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