5. Finitely Generated Modules over a PID

We want to give a complete classification of finitely generated modules over a PID. Recall that a finitely generated module is a quotient of \mathbb{R}^n , a free module. Let K be the kernel. Then M is isomorphic to \mathbb{R}^n/K , by the Isomorphism Theorem.

Now K is a submodule of a Noetherian module; hence K is finitely generated. Pick a finite set of generators of K (it turns out that K is also isomorphic to a free module. Thus K is isomorphic to \mathbb{R}^m , for some m, and in fact $m \leq n$).

As there is a map $\mathbb{R}^m \longrightarrow K$, by composition we get an \mathbb{R} -linear map

$$\phi\colon R^m \longrightarrow R^n.$$

Since K is determined by ϕ , M is determined by ϕ . The crucial piece of information is to determine ϕ .

As this map is *R*-linear, just as in the case of vector spaces, everything is determined by the action of ϕ on the standard generators f_1, f_2, \ldots, f_m . Suppose that we expand $\phi(f_i)$ as a linear combination of the standard generators e_1, e_2, \ldots, e_n of \mathbb{R}^n .

$$\phi(f_i) = \sum_j a_{ij} e_j.$$

In this case we get a matrix

$$A = (a_{ij}) \in M_{n,m}(R).$$

The point is to choose different bases of \mathbb{R}^m and \mathbb{R}^n so that the representation of ϕ by A is in a better form. Note the following:

Lemma 5.1. Let r_1, r_2, \ldots, r_n be (respectively free) generators of M. Then so are s_1, s_2, \ldots, s_n , where we apply one of:

- (1) we multiply one of the r_i by a unit,
- (2) we switch the position of r_i and r_j ,
- (3) we replace r_i by $r_i + ar_j$, where a is any scalar.

Proof. Easy.

At the level of matrices, (5.1) informs us that we are free to perform anyone of the elementary operations on matrices, namely multiplying a row (respectively column) by a unit, switching two rows (respectively columns) and taking a row and adding an arbitrary multiple of another row (respectively column).

Proposition 5.2. Let A be a matrix with entries in a PID R.

Then we can find two invertible square matrices B and C in R such that the matrix BAC has the following form:

The only non-zero entries are on the diagonal and each non-zero entry divides the next one in the list.

If R is a Euclidean domain then we can put A into the given form after a sequence of elementary row and column operations.

Proof. This is much easier than it looks. Suppose that the gcd of the entries of A is d. As R is a PID, d is a linear combination of the entries of A.

Suppose that one of the entries of A is d. By permuting the rows and columns, we may assume that d is at the top left hand corner. As d is the gcd, it divides every entry of A. By row and column reduction we reduce to the case that the only non-zero entry in the first column and row is the entry d at the top left hand corner. Let B be the matrix obtained by striking out the first row and column. Then every element of B is divisible by d and we are done by induction on m and n.

So we have to show that we can manipulate A until one of the entries is d. As R is a PID, d is linear combination of the entries of A. By induction on the number of entries, we may assume that

$$A = \begin{pmatrix} a \\ b \end{pmatrix}.$$

If R is a Euclidean domain then we can put A into the given form after a sequence of row operations; just apply Euclid's algorithm.

In the general case, note that we may find x and y such that

$$d = xa + yb.$$

Note that the gcd of x and y must be 1. Therefore we may find u and v such that

1 = ux + vy.

Let

$$B = \begin{pmatrix} x & y \\ -v & u \end{pmatrix}.$$

Note that the determinant of B is

$$xu + yv = 1.$$

Thus B is invertible, with inverse

$$\begin{pmatrix} u & -y \\ v & x \end{pmatrix}.$$

On the other hand,

$$BA = \begin{pmatrix} d \\ -va + ub \end{pmatrix}.$$

Corollary 5.3. Let M be a module over a PID R.

Then M is isomorphic to $F \oplus T$, where $F \simeq R^r$ is a free module and T is isomorphic to either,

(1)

$$R/\langle d_1 \rangle \oplus R/\langle d_2 \rangle \oplus \cdots \oplus R/\langle d_n \rangle.$$

where d_i divides d_{i+1} , or

(2)

$$R/\langle p_1^{m_1}\rangle \oplus R/\langle p_2^{m_2}\rangle \oplus \cdots \oplus R/\langle p_n^{m_n}\rangle.$$

where p_i is a prime.

The integer r and d_1, d_2, \ldots, d_n are invariant, up to associates. r is called the **rank**.

Proof. By the Chinese Remainder Theorem it suffices to prove the first classification result. By assumption M is isomorphic to a quotient of \mathbb{R}^n by an image of \mathbb{R}^m . By (5.2) we may assume the corresponding matrix has the given simple form. Now note that the last r rows that contain only zero entries, corresponds to the free part, and there is an obvious corrrespondence between the non-zero rows and the direct summands of the torsion part.

Now suppose that

$$F \oplus T \simeq F' \oplus T',$$

where F and F' are free and T and T' are not. Suppose that we tensor this with the field of fractions K of R. Note that we have

$$R/\langle a \rangle \underset{R}{\otimes} K = \begin{cases} K & \text{if } a = 0\\ 0 & \text{otherwise.} \end{cases}$$

Indeed if a = 0 then we have $R \bigotimes_{R} K = K$. On the other hand, note that the annihilator of $R/\langle a \rangle$ is $\langle a \rangle$. By extension of scalars, $R/\langle a \rangle \bigotimes_{R} K$ is a vector space over K. The only vector space with non-trivial annihilator is the zero vector space.

Since tensor product commutes with direct sum, we get that

$$K^r \simeq K^{r'}$$

Thus the rank r = r' is nothing more than the dimension of the *K*-vector space $M \bigotimes_{P} K$.

Note that the annihilator of T is the intersection of the ideals

$$\bigcap_{i=1}^{n} \langle d_i \rangle = \langle d_n \rangle.$$

By assumption we may find R-linear maps

$$f: F \oplus T \longrightarrow F' \oplus T'$$
 and $g: F' \oplus T' \longrightarrow F \oplus T$,

which are inverse to each other. Consider the composition of the natural inclusion $T \longrightarrow F \oplus T$, f and the projection onto F'. Since the annihilator of T is non-trivial, the image has non-trivial annihilator. But then the image is zero. It follows that f and g induce isomorphisms $T \simeq T'$.

Since the annihilator of T is $\langle d_n \rangle$ it follows that

$$\langle d_n \rangle = \langle d'_{n'} \rangle.$$

Thus d_n and $d'_{n'}$ are associates.

We may write $T = T_0 \oplus T_1$ and $T' = T'_0 \oplus T'_1$, where T_1 is the direct sum of all cyclic factors with annihilator $\langle d_n \rangle$, and T_0 is the direct sum of the other cyclic factors. Note that the annihilator of T_0 is bigger than the annihilator $\langle d_n \rangle$ of T_1 and that the annihilators of T_1 and T'_1 are equal. Note that

$$T_1 \simeq \left(\frac{R}{\langle d_n \rangle}\right)^a,$$

for some integer a.

Let $0 \le m \le n$ be the largest integer such that d_m and d_n are not associates. Pick a prime factor p of d_n/d_m . Let $d = d_n/p$ and let

$$M_0 \subset M$$

be the submodule of all elements of M with annihilator $\langle d \rangle$. Note that

$$M = T_0 + pT_1 = T'_0 + pT'_1.$$

Since

$$\frac{R}{\langle d_n \rangle} / \frac{\langle p \rangle}{\langle d_n \rangle} \simeq \frac{R}{\langle p \rangle}$$

we have

$$\frac{M}{M_0} \simeq \left(\frac{R}{\langle p \rangle}\right)^a.$$

As the LHS is naturally a vector space over the field $K = \frac{R}{\langle p \rangle}$, we have

$$a = \dim_K \frac{M}{M_0}.$$

Thus a = a'.

On the other hand, by Noetherian induction, $T_0 + pT_1$ and $T'_0 + pT'_1$ have the same cyclic factors. Thus T_0 and T_1 have the same cyclic factors.

One special case deserves attention:

Corollary 5.4. Let G be a finitely generated abelian group.

Then G is isomorphic to $\mathbb{Z}^r \times T$, where T is isomorphic to (1)

 $\mathbb{Z}_{d_1} \times \mathbb{Z}_{d_2} \times \cdots \times \mathbb{Z}_{d_n},$

where d_1, d_2, \ldots, d_n are positive integers and d_i divides d_{i+1} , or (2)

 $\mathbb{Z}_{p_1^{m_1}} imes \mathbb{Z}_{p_2^{m_2}} imes \cdots imes \mathbb{Z}_{p_n^{m_n}}.$

where p_1, p_2, \ldots, p_n are primes.

Really the best way to illustrate the proof of these results, which are not hard, is to illustrate the methods by an example. Suppose we are given

$$\begin{pmatrix} -58 & 4 & 65 & 1 \\ 4 & 2 & 1 & -1 \\ -32 & 2 & 34 & 2 \\ -26 & 2 & 31 & -1 \\ -1 & 1 & 2 & 1 \end{pmatrix}$$

This represents a $\mathbbm{Z}\text{-linear}$ map

$$\mathbb{Z}^4 \longrightarrow \mathbb{Z}^5$$
,

in the standard way. The gcd is 1. Thus we first switch the first and fourth columns.

$$\begin{pmatrix} 1 & 4 & 65 & -58 \\ -1 & 2 & 1 & 4 \\ 2 & 2 & 34 & -32 \\ -1 & 2 & 31 & -26 \\ 1 & 1 & 2 & -1 \end{pmatrix}$$

We could stop swapping here, but in fact it is better to switch the first and last row

$$\begin{pmatrix} 1 & 1 & 2 & -1 \\ -1 & 2 & 1 & 4 \\ 2 & 2 & 34 & -32 \\ -1 & 2 & 31 & -26 \\ 1 & 4 & 65 & -58 \end{pmatrix}.$$

As we now have a 1 in the first row, we can now eliminate 1, 2 and -1 from the first row, a la Gaussian elimination, to get

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 3 & 3 & 3 \\ 2 & 0 & 30 & -30 \\ -1 & 3 & 33 & -27 \\ 1 & 3 & 63 & -57 \\ & & 5 \end{pmatrix} .$$

Now eliminate the entries in the first column.

(1)	0	0	0	
0	3	3	3	
0	0	30	-30	
0	3	33	-27	
0	3	63	-57	

Now eliminate as before,

	$(1 \ 0 \ 0 \ 0)$
	$0 \ 3 \ 0 \ 0$
	$0 \ 0 \ 30 \ -30$,
	0 3 30 -30
	$\begin{pmatrix} 0 & 3 & 60 & -60 \end{pmatrix}$
so that we get	
	$(1 \ 0 \ 0 \ 0)$
	$0 \ 3 \ 0 \ 0$
	$0 \ 0 \ 30 \ -30$.
	$0 \ 0 \ 30 \ -30$
	$\begin{pmatrix} 0 & 0 & 60 & -60 \end{pmatrix}$
Now eliminate again	X /
	$(1 \ 0 \ 0)$
	$\begin{bmatrix} 0 & 0 & 30 & 0 \end{bmatrix}$
so that we get	
<u> </u>	$(1 \ 0 \ 0 \ 0)$
	$\begin{bmatrix} 0 & 3 & 0 & 0 \end{bmatrix}$
	0 0 30 0 .
	$\langle \circ \circ \circ \circ \rangle$

It follows then that we have

 $(\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z})/(\mathbb{Z} \oplus 3\mathbb{Z} \oplus 30\mathbb{Z}) \simeq \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_{30} \simeq \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}_3 \times \mathbb{Z}_{30}.$

The free part is $\mathbb{Z} \times \mathbb{Z}$ and the torsion part is $\mathbb{Z}_3 \times \mathbb{Z}_{30} \simeq \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_5$. In this case the rank is 2.