
6. Canonical Forms

Let φ : V −→ V be an F -linear endomorphism, where V is a finite
dimensional vector space over the field F . Our goal is to understand
φ. If we do the usual thing, which is to pick a basis for V , v1, v2, . . . , vn
and expand φ in this basis, then we get a matrix A = (aij) and if we
choose a different basis then we get a similar matrix, BAB−1, where
B is the matrix giving the change of basis.

The trick is to look for invariant subspaces:

Definition 6.1. Let φ : V −→ V be a linear map of finite dimensional
vector spaces.

We say that a subspace W is invariant if φ(W ) ⊂ W .

Suppose that W is a one dimensional invariant subspace. If w ∈ W
is a non-zero vector then

φ(w) = λw,

so that w is an eigenvector with eigenvalue λ. Now if V decomposes as
a direct sum of invariant one dimensonal subspaces then we can pick a
basis for these one dimensonal subspaces and φ is a diagonal matrix in
this basis. In general this is too much to hope for but this suggests we
should look for the minimal non-trivial invariant subspaces.

Suppose that we pick a non-zero vector v and and look at its image
under iterates of φ,

vi =

{
v if i = 0

φ(vi−1) otherwise.

At some point vi is a linear combination of the previous vectors,

vi =
∑

ajvj.

Put differently, if we let

Vi = 〈v1, v2, . . . , vi〉,

then

V0 ⊂ V1 ⊂ V2 . . . .

Either Vi+1 6= Vi, in which case dimVi+1 = dimVi + 1 or Vi+1 = Vi.
This gives us a sequence of increasing linear subspaces and the last one
is an invariant subspace.

Note that if W is invariant under the action of φ, it also invariant
under the action of any polynomial in φ

f(φ)(W ) ⊂ W.
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If we think of V as an F [x]-module, via the action of φ, the invariant
subspaces are precisely the R-submodules and the minimal invariant
subspaces are the cyclic subspaces, the R-submodules generated by
a single vector. Thus the examples above are the minimal invariant
subspaces.

Definition-Lemma 6.2. Let φ : V −→ V be a linear endomorphism of
a finite dimensonal vector space. The minimal polynomial m(x) ∈
F [x] of φ is a monic polynomial of smallest degree such that m(φ) = 0.

Ann(V ) = 〈m〉.

Proof. Since R is a PID, the ideal Ann(V ) is principal and a generator
has minimal degree. �

There are now two cases. If F is not algebraically closed then we
don’t try to be too clever. We just pick a vector v, look at its iterates.
The matrix of this linear transformation looks like:

0 0 0 . . . −a0
1 0 0 . . . −a1
0 1 0 . . . −a2
0 0 1 . . . −a3
...

...
... −an−1


Here the last entries are −a0, −a1, . . . .

Definition 6.3. Let m(x) be the monic polynomial

m(x) =
∑

aix
i,

of degree n. The companion matrix of m(x) is the matrix
0 1 0 0 . . .
0 0 1 0 . . .
0 0 0 1 . . .
...

...
... . . .

. . .
−a0 −a1 −a2 . . . −an−1


Here the last row consists of the coefficients of −m(x), not including

the leading term.
If F is algebraically closed we can do much better.
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Definition 6.4. Let λ be a scalar. A Jordan block is a matrix of the
form 

λ 1 0 0 . . .
0 λ 1 0 . . .
0 0 λ 1 . . .
...

...
... . . .

. . .
0 0 0 . . . λ


The entries containing the ones above the main diagonal is called the

super diagonal. Somewhat fancifully J = A − λIn is the companion
matrix associated to the zero polynomial.

Definition 6.5. Let φ : V −→ V be a linear endomorphism of a finite
dimensonal vector space. The characteristic polynomial

g(x) = det(φ− xI),

where I is the identity transformation.

Lemma 6.6. Let A be an n× n matrix with entries in a field F .

(1) If A is the companion matrix of a monic polynomial g(x) of
degree n then the minimal polynomial m(x) of A is g(x) and
the characteristic polynomial is (−1)nm(x).

(2) If J is a Jordan block then the minimal polynomial is (x− λ)n

and the characteristic polynomial is (−1)n(x− λ)n.

In particular the characteristic and minimal polynomial differ only by
sign.

Proof. Suppose first that A is the companion matrix of g(x). Let

vi =

{
e1 if i = 0

Atvi−1 if i > 0.

Then vi = ei+1, for i = 0, 1, . . .n− 1. In particular v0, v1, . . . , vn−1 are
independent.

Suppose that

f(x) =
∑

bix
i ∈ F [x].

If f(φ) = 0 then f(φ)(v) = 0, so that∑
bivi = 0.

In particular if f(x) is monic of degree k then k ≥ n as v0, v1, . . . , vn−1

are independent.
On the other hand m(φ)(v) = 0, so that m(φ) = 0, as the images of

v span V . It follows easily that m(x) is the minimal polynomial.
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One can prove that the characteristic polynomial is −(1)nm(x) by
expanding about the top row and induction on n.

Now suppose that A is a Jordan block. Let B = A− λI. Note that
by direct computation that the image of Bk is the span of the first k
vectors. Thus

Bk = 0,

if and only if k ≥ n.
Thus the minimal polynomial of B divides (x− λ)n. It follows that

the minimal polynomial is equal to (x−λ)d, for some d ≤ n. As Bd 6= 0
it follows that the minimal polynomial is (x− λ)n.

It easy to see that the characteristic polynomial is (−1)n(x−λ)n. �

Definition 6.7. Let A be a matrix. We say that A is in rational
canonical form if A is a block matrix, with zero matrices everywhere,
except a bunch of square matrices containing the diagonal which are
companion matrices of polynomials, g1, g2, . . . , gk, where gi(x) divides
gi+1(x).

Definition 6.8. Let A be a matrix. We say that A is in Jordan
canonical form if A is a block matrix, with zero matrices everywhere,
except a bunch of square matrices containing the diagonal which are
Jordan blocks.

Theorem 6.9 (Rational Canonical Form). Let φ : V −→ V be a linear
map between finite dimensional vector spaces, over a field F .

Then there is a basis e1, e2, . . . , en such that the corresponding matrix
is in rational canonical form. Equivalently every matrix A is similar
to a matrix in rational canonical form. This decomposition is unique,
if we order the blocks so that di divides di+1.

The minimal polynomial of m(x) is the last polynomial dk(x) and the
characteristic polynomial is equal to the product of d1, d2, . . . , dk.

Proof. As R = F [x] is a PID we may apply the classification of modules
over a PID to conclude that V is isomorphic to the direct sum Rr⊕T .
As R is an infinite dimensional vector space, it follows that r = 0. We
can present T as

F [x]/〈d1(x)〉 ⊕ F [x]/〈d2(x)〉 ⊕ · · · ⊕ F [x]/〈dk(x)〉,

where di divides di+1. Now each direct summand corresponds to a block
of our matrix. The action is given by multiplication by x. It follows
that the action of φ preserves this decomposition, so that in block form
we only get zero matrices off the main diagonal. So we might as well
assume that there is only one summand (and then only one block).
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Consider the action of φ with respect to the basis 1, x, x2, . . . , xn−1,
where n is the degree of d(x). φ sends 1 to x, x to x2 and so on. Now

xk =
∑
−aixi,

where the entries a1, a2, . . . , ak are in the last column and

d(x) = xn +
∑

aix
i.

Taking transposes we get the companion matrix of d(x). �

Corollary 6.10 (Cayley-Hamilton). Let φ : V −→ V be a linear map
between finite dimensional vector spaces over a field F .

Then φ satisfies its own characteristic polynomial. Equivalently, the
minimal polynomial divides the characteristic polynomial.

Proof. Applying the classification above, we see that the minimum
polynomial ism(x) = dn(x) and the characteristic polynomial is d1(x)d2(x) . . . dn(x).

�

Theorem 6.11 (Jordan Canonical Form). Let φ : V −→ V be a lin-
ear map between finite dimensional vector spaces, over an algebraically
closed field F .

Then there is a basis e1, e2, . . . , en such that the corresponding matrix
is in Jordan canonical form. Equivalently every matrix A is similar to
a matrix in Jordan canonical form.

Proof. V is is isomorphic to

F [x]/〈pm1
1 (x)〉 ⊕ F [x]/〈pm2

2 (x)〉 ⊕ · · · ⊕ F [x]/〈pmk
k (x)〉,

where each pi(x) is a prime (equivalently irreducible) polynomial. As
before we might as well assume that there is only one summand (and
then only one block).

Since F is algebraically closed, the only irreducible polynomials are
in fact linear polynomials. Thus

p(x) = x− λ
for some λ ∈ F . Note that m1 = n, so that V is isomorphic to

F [x]/〈(x− λ)n〉.
Consider the linear map ψ = φ − λI. For this action V is isomorphic
to

F [y]/〈yn〉.
It is easy to see that if we put ψ into rational canonical form then the
corresponding matrix for φ is a Jordan block. �

5


	6. Canonical Forms

