
7. Field Extensions

Suppose that we are interested in solving a polynomial equation.
The natural place to look for solutions to equations is in a field and in
field extensions.

Definition 7.1. Let L be a field and let K be a subfield. Then we say
that L/K is a field extension.

Our aim then is to understand field extensions. Just as in the case
of groups, rings and modules, we want to break up the problem of
understanding the field extension L/K into parts.

Definition 7.2. Let L/K be a field extension. If M is a subfield of L
that contains K, then we say that M is an intermediary field.

Thus an intermediary field is to a field extension as a subgroup (re-
spectively subring, submodule) is to a group (respectively ring, mod-
ule). As always in this situation, there is a notion of a subset generating
an extension.

Definition 7.3. Let L/K be a field extension. Let S be a subset of L.
The subfield generated by S, denoted K(S), is the smallest subfield
of L that contains K and S.

We say that S generates L/K if L = K(S). We say that L/K is
finitely generated if we can find a finite set S that generates L/K.
We say that L/K is primitive is there is a single element α of L that
the generates L/K, so that L = K(α). In this case, we say that α is a
primitive generator.

As usual, to prove that (7.3) makes sense, it suffices to observe that
the intersection of field extensions is a field extension. In contrast to
the field generated by S, we will denote by K[S], the smallest ring that
contains K and S. Obviously we have K[S] ⊂ K(S), and in many
cases we won’t have equality. For example, if x is an indeterminate,
then K(x) is the field of fractions of the polynomial ring K[x].

Definition 7.4. Let L be a field. The prime subfield of L is the
smallest field containing the empty set.

It is straightforward to list all possible prime subfields.

Proposition 7.5. Let L be a field and let K be the prime subfield.
If the characteristic is zero, then K is isomorphic to Q. If the char-

acteristic is p, then K is isomorphic to Fp.

Proof. Let R be the smallest subring that contains the empty set.
Clearly K is the field of fractions of R.
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There are two cases. If the characteristic is p, then we have already
seen that R is isomorphic to Zp. As this is isomorphic to Fp, which is
already a field, then K is isomorphic to Fp.

Otherwise the characteristic is zero. In this case, R is isomorphic to
Z. In this case the field of fractions K of R is isomorphic to Q. �

One particular consequence of (7.5) is that every field may be consid-
ered as a field extension over its prime field. Thus, since we understand
the fields Q and Fp quite well, the study of fields is naturally subsumed
in the study of field extensions.

The most basic observation, which in fact is really the main obser-
vation of field extensions, is that given a field extension L/K, L is a
vector space over K, simply by restriction of scalars.

Definition 7.6. Let L/K be a field extension. The degree of L/K,
denoted [L : K], is the dimension of L over K, considering L as a
vector space over K.

We say that L/K is finite, if L is a finite dimensional vector space
over K.

Example 7.7. C/R has degree two. Indeed it is clear that 1 and i form
a basis for C/R, as every complex number is, by definition, uniquely of
the form a+ bi.

Lemma 7.8. Let F be a finite field.
Then the order q of F is a power of a prime.

Proof. Let p be the characteristic of F . p is not zero, as F cannot
contain Q, an infinite set. Thus p is a prime and F is a field extension
of Fp. As F is finite, the field extension F/Fp is finite. But every finite
dimensional vector space over Fp is isomorphic, as a vector space, to a
direct sum of copies of Fp. In particular the cardinality of F is equal
to the cardinality of the cartesian product of Fp with itself a finite
number of times, and the cardinality of a product is the product of
the cardinalities. Thus q = pd, where d is the degree of the extension
F/Fp. �

Note that the proof of (7.8) gives us much more than simply the
cardinality of F , in fact we know the additive structure of F (a product
of d copies of the cyclic group of order p). We will see later that we
can almost as explicitly determine the multiplicative structure as well.

Proposition 7.9 (Tower Law). Let L/K be a field extension and let
M be an intermediary field.

Then
[L : K] = [L : M ][M : K].
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Proof. Consider first the possibility that one of the two field extensions
L/M or M/K is infinite. In this case L would contain infinitely many
independent vectors over K and so it is clear that L/K is also infinite,
and the equation comes out correctly in this case.

Otherwise we assume that both L/M and M/K are finite extensions.
Suppose that e1, e2, . . . , em is a basis for L/M and that f1, f2, . . . , fn is
a basis for M/K. In this case,

[L : M ] = m and [M : K] = n.

Clearly it suffices to prove that eifj, i = 1 . . .m and j = 1 . . . n is a
basis for [L : K], since then

[L : K] = mn = [L : M ][M : K].

We have to prove two things, that {eifj} spans and that it is inde-
pendent. We first show that it spans. Pick l ∈ L. As e1, e2, . . . , em is
a basis for L/M , it follows that we may find α1, α2, . . . , αm ∈ M such
that

l =
∑
j

αje.

On the other hand, as αi ∈ M and f1, f2, . . . , fn is a basis for M/K,
for each i, there are βij ∈ K such that

αi =
∑

βijfj.

Putting all this together we have

l =
∑
i

αiei

=
∑
i

(
∑
j

βijfj)ei

=
∑
i,j

βij(eifj).

Thus l is a linear combination of eifj over K and so eifj span L/K.
Now we turn to linear independence. Suppose that∑

i,j

βijeifj = 0.

We have to prove that
βij = 0.

Rearranging, we have ∑
i

(
∑
j

βijfj)ei = 0.
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Set αi =
∑

j βijfj. Then αi ∈M and∑
i

αiei = 0.

As e1, e2, . . . , em are independent over M , it follows that∑
j

βijfj = αi = 0.

By independence of f1, f2, . . . , fn over K, we get βij = 0, for all i and
j.

Thus {eifj} is indeed a basis for L/K. �

We say that a polynomial is monic if its leading coefficient is one.

Definition 7.10. Let L/K be a field extension and let α be an element
of K. We say that α is algebraic over K, if there is a polynomial
f(x) ∈ K[x] such that f(α) = 0. The minimum degree monic polyno-
mial with this property is called the minimum polynomial of α over
K. It will be denoted mα(x).

If there is no such polynomial we say that α is transcendental over
K.

An extension L/K is called algebraic if every element of L is alge-
braic over K.

If α ∈ C is a complex number, then we say that α is algebraic
(respectively transcendental) if it is so over Q.

Example 7.11. α =
√

2 is algebraic over Q.
Indeed α is a zero of x2 − 2 ∈ Q[x]. Of course

√
2 is not a rational

number, that is,
√

2 is irrational. It follows that x2−2 is the minimum
polynomial of

√
2.

Similarly i is algebraic, as i is a zero of the polynomial x2+1. Again,
as i /∈ Q, it follows that x2 + 1 is the minimum polynomial of i over Q.

Consider the set Q of all complex numbers that are algebraic over Q.
Since there are only countably many equations (the countable union
of countable sets is countable), and each possible equation has only
finitely many roots, then in fact there are only countably many alge-
braic numbers. As there are uncountably many irrational numbers, it
follows that most numbers are transcendental. On the other hand, it is
quite difficult to exhibit a single transcendental number and extremely
difficult to prove the following, which is a deep result of analysis:

Theorem 7.12. e and π are transcendental.

What can we say about the structure of primitive extensions?
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Lemma 7.13. Let R be a PID and let I be a non-zero prime ideal of
R.

Then R/I is a field.

Proof. It suffices to prove that I is maximal. Suppose that I ⊂ J ⊂ R,
where J is an ideal of R. As R is a PID, there are two elements a
and b of R such that I = 〈a〉 and J = 〈b〉. As a ∈ J , b divides a.
As I is prime, a is irreducible, and so either b is a unit, in which case
J = R, or b is an associate of a, in which case J = I. Either way, I is
maximal. �

Theorem 7.14. Let L/K be a field extension, and let α be an element
of L. Set M = K(α).

If α is transcendental over K, then M is isomorphic to the field of
rational functions of K, that is the field of fractions K(x) of K[x]. In
particular any two transcendental elements generate isomorphic exten-
sions.

If α is algebraic over K, then

K(α) = K[α] ' K[x]/〈mα(x)〉.
In particular any two elements of L with the same miminal polyno-

mial generate isomorphic field extensions.

Proof. It is clear that K(α) is the smallest field that contains K[α], so
that K(α) may be identified with the field of fractions of K[α].

We recall some of the theory of polynomial rings. Given any field
extension L/K and an element α of L, there is a unique ring homo-
morphism

φ = evα : K[x] −→ L,

which is defined by sending x to α. This follows by the universal
property of polynomial rings. The kernel of evα is an ideal I in K[x].
It consists of all polynomials f(x) ∈ K[x] which vanish at α.

The image of φ is clearly K[α]. By the Isomorphism Theorem

K[α] ' K[x]/I.

As K[α] is a subset of L, it follows that K[α] is an integral domain.
But then I must be a prime ideal. If α is transcendental, then I is the
zero ideal and we have an isomorphism K[α] with K[x]. The result
follows in this case.

From now on, we suppose that α is algebraic, so that I is non-
trivial. As K is a field, K[x] is a Euclidean domain, and so K[x] is
a principal ideal domain. Thus there is a polynomial f(x) ∈ K[x]
such that I = 〈f(x)〉. Since K is field, if f(x) 6= 0, we can always
normalise f(x) so that it is monic. It is clear that in fact, in this case,
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f(x) = mα(x) (in fact this is a better way to define the minimum
polynomial in the first place). As I is prime, f is irreducible. By
(7.13) K[x]/〈f(x)〉 is a field. Thus K[α] is a field and so by definition
K[α] = K(α). �

This innocent looking result will prove to be the linchpin of the
whole Theory of field extensions. It has the following remarkable con-
sequences.

Corollary 7.15. The two fields Q(e) and Q(π) are isomorphic.

Proof. Clear, since both e and π are transcendental over Q. �

Example 7.16. (7.14) gives a beautiful way to construct field exten-
sions. For example, let us see how to construct the field C, given the
real numbers.

We want to adjoin a square root of −1. So we consider the polyno-
mial x2 + 1. This is irreducible so that (7.14) tells us that

R[x]/〈x2 + 1〉
is in fact a field, and that the coset generated by x is a square root of
−1. Indeed put α = x+ I. Then

α2 = (x+ I)2

= x2 + I

= x2 + 〈x2 + 1〉
= −1 + 〈x2 + 1〉
= −1 + I

= −1.

Example 7.17. Let ω be a primitive cube root of unity, so that ω3 = 1,
but ω 6= 1. Let α be a real root of x3 − 2 (so that α is the cube root of
2). By Eisenstein, x3 − 2 is irreducible over Q. Then both α and ωα
have the same minimum polynomial, x3 − 2. Thus

Q(α) ' Q(ωα) ' Q(ω2α).

Of course, as subfields of C, these fields are quite different.

Lemma 7.18. Let L/K be a field extension and let α be algebraic over
K.

Then the minimum polynomial of α divides every polynomial that
has α as a root. In particular a monic polynomial which has α as a
root, is the minimum polynomial of α if and only if it is irreducible.
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Proof. Follows from the fact that in the proof of (7.14), it is proved
that the minimum polynomial generates the ideal of all functions that
have α as a root and the fact that this ideal is prime. �

Corollary 7.19. Let L/K be a field extension, let α be an algebraic
element of L. Let d be the degree of the minimum polynomial of α.

Then [K(α) : K] = d.

Proof. It clearly suffices to prove that 1, α, α2, . . . , αd−1 form a basis
for K(α). We have to show that these elements both span and are
independent.

First we prove that they span. Suppose the minimal polynomial is

xd + ad−1x
d−1 + · · ·+ a0,

so that

αd + ad−1α
d−1 + · · ·+ a0 = 0.

As K(α) = K[α] and the latter is generated by the powers of α, it
suffices to prove that αn is a linear combination of 1, α, α2, . . . , αd−1. If
n < d there is nothing to prove. Otherwise, by induction, it suffices to
prove that αn is a linear combination of 1, α, α2, . . . , αn−1. But

αn = αn−dαd

= αn−d(−ad−1αd−1 − · · · − a0)
= −ad−1αn−1 − · · · − a0αn−d.

Thus 1, α, α2, . . . , αd−1 span K(α)/K.
Now we turn to linear independence. Suppose that∑

biα
i = 0.

Let g(x) =
∑
bix

i. Then α is a zero of g(x). As the degree of g is
less than the degree of mα(x), the mininum polynomial of α, it follows
that g(x) is the zero polynomial. But then each bi = 0 and we also
have linear independence.

Thus 1, α, α2, . . . , αd−1 do indeed form a basis. �

Example 7.20. Let us calculate the degree of Q(
√

2,
√

3)/Q.

The minimum polynomial of
√

2 over Q is x2 − 2. Similarly the
minimum polynomial of

√
3 over Q is x2 − 3. Thus

[Q(
√

2) : Q] = [Q(
√

3) : Q] = 2.

However, by the tower law,

[Q(
√

2,
√

3) : Q] = [Q(
√

3,
√

2) : Q(
√

2)][Q(
√

2) : Q].
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So we want to calculate

[Q(
√

3,
√

2) : Q(
√

2)].

Now x2−3 ∈ Q(
√

2)[x], and
√

3 is a zero of this, so the latter is either
1 or 2, depending on whether x2− 3 is irreducible, when considered as
a polynomial over Q(

√
2). Since x2 − 3 is quadratic, this is the same

as to ask whether or not x2 − 3 has a root in Q(
√

2).
Suppose it does. Let β ∈ Q(

√
2) be a root of x2 − 3. It helps to

rename
√

2 as α. As Q(α) is quadratic over Q, 1 and α are a basis.
Thus there are rational numbers a and b such that

β = a+ bα.

Squaring both sides, we get

3 + 0α = 3 = β2 = a2 + 2abα + b2α2 = (a2 + 2b2) + 2abα.

Comparing like terms, and using the fact that 1, α is a basis, we get

a2 + 2b2 = 3

and
2ab = 0.

Thus either b = 0 and a2 = 3 or a = 0 and 2b2 = 3, either of which are
clearly impossible, since a and b are rational numbers.

Thus, by the Tower law, the extension has degree four.

Lemma 7.21. Let L/K be a field extension.
Then L/K is finite if and only if L = K(α1, α2, . . . , αn) where each

αi is algebraic over K.

Proof. Easy consequence of (7.9) and (7.14). �

Lemma 7.22. Let L/K be a field extension. Let M be the subset of L
consisting of all elements of L that are algebraic over K.

Then M is an intermediary field.

Proof. Suppose that α ∈ K. Then α is a root of the polynomial x−α.
Thus α is algebraic over K and so K ⊂M .

Note that γ ∈ M if and only if γ is algebraic over K if and only if
K(γ)/K is a finite extension.

Suppose that α and β are in M . It suffices to prove that α+ β, −α,
αβ and 1/α are in M . All of these are elements of the field K(α, β).
Thus it suffices to prove that K(α, β) ⊂ M . As α and β are in M ,
K(α)/K and K(β)/K are finite. Thus K(α, β)/K(β) is certainly finite
and so, by the Tower Law,

[K(α, β) : K] = [K(α, β) : K(β)][K(β) : K]
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it follows that K(α, β)/K is finite. Let γ ∈ K(α, β). Then by the
Tower Law

[K(α, β) : K] = [K(α, β) : K(γ)][K(γ) : K],

so that K(γ)/K is finite. But then γ is algebraic over K and γ ∈ M .
Thus K(α, β) ⊂M as required. �

Theorem 7.23. Let L/K be a finite field extension.
Then L/K is primitive if and only if there are only finitely many

intermediary fields.

Proof. Suppose that L/K is primitive. Let α be a primitive generator,
so that L = K(α). Let M be an intermediary field. Clearly L = M(α).
Attach to M the data fM(x) of the minimum polynomial of α over M .

I claim that fM determines M . Indeed first note that fM(x) ∈M [x]
and that fM(x) is monic and irreducible. Let M ′ be the subfield of M
generated by the coefficients of fM . By definition ofM ′, fM(x) ∈M ′[x].
As fM ′ is the minimal polynomial of α over M ′, it follows that fM ′

divides fM . As fM is irreducible in M [x], it is certainly irreducible in
M ′[x]. Thus fM = fM ′ . Thus

[L : M ] = [L : M ′]

as both are equal to the degree of fM . On the other hand,

[L : K] = [L : M ][M : K] = [L : M ′][M ′ : K],

by the tower law applied to both L/M/K and L/M ′/K. Thus

[M : K] = [M ′ : K].

Now consider the extensions M/M ′/K. We have

[M : K] = [M : M ′][M ′ : K].

We conclude that [M : M ′] = 1. Thus M = M ′. But clearly M ′ is
determined by fM so that M is also determined by fM .

Now observe that there are only finitely many possibilities for fM .
In fact fM divides fK over L, and as L[x] is a UFD, there are only
finitely many ways to factor fK . Thus there are only finitely many
intermediate fields.

Suppose that there are only finitely many intermediary fields. We
want to prove that L/K is primitive. We will prove this for now only
in the case that L is infinite; we defer the case of finite fields to later
on in the course.

Suppose not. Let α be an element of L such that [K(α) : K] is max-
imal. By assumption we may pick β ∈ L not in K(α). Consider the
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intermediary fields, K(α+λβ), where λ ranges over K. As there are in-
finitely many different values for λ and only finitely many intermediary
fields, there are λ 6= µ ∈ K such that

K(α + λβ) = K(α + µβ) = M.

Clearly α + λβ and α + µβ ∈M . Thus

(α + λβ)− (α + µβ) = λβ − µβ
= (λ− µ)β,

lies in M . As λ 6= µ, we can divide by λ− µ, to conclude that β ∈M .
Thus

(α + λβ)− λβ = α ∈M.

Thus α and β lie in M . As α ∈ M , K(α) ⊂ M . As β /∈ K(α), this
inclusion is strict. Thus the degree of M over K is greater than the
degree of K(α) over K. As M = K(γ), for γ = α+λβ, this contradicts
our choice of α. Thus L/K is primitive. �
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