8. Splitting Fields

Definition 8.1. Let K be a field and let $f(x)$ be a polynomial in $K[x]$. We say that $f(x)$ splits in K if there are elements $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ of K such that

$$
f(x)=\lambda\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right) \ldots\left(x-\alpha_{n}\right) .
$$

We say that a field extension L / K is a splitting field if $f(x)$ splits in L and there is no proper intermediary subfield M in which $f(x)$ splits.

Example 8.2. Let $f(x)=x^{2}-5 x+6$. Then \mathbb{Q} is a splitting field for f.

Indeed

$$
f(x)=(x-2)(x-3),
$$

and \mathbb{Q} does not contain any proper fields whatsoever, let alone smaller fields in which $f(x)$ would split.
Example 8.3. Let $f(x)=x^{2}+1 \in \mathbb{Q}[x]$. Then $f(x)$ splits in \mathbb{C}, as

$$
f(x)=(x-i)(x+i)
$$

But \mathbb{C} is not a splitting field. Indeed f splits inside $\mathbb{Q}(i)$, and this is much smaller than \mathbb{C}. In fact this field is a splitting field, almost by definition.

Example 8.4. Finally consider $x^{6}-2$.
Let $\alpha=\sqrt[6]{2}$, be the unique positive real root, and let ω be a primitive sixth root of unity, so that $\omega^{6}=1$, but no smaller power of ω is equal to one. Then a splitting field is given by

$$
\mathbb{Q}(\alpha, \omega) .
$$

Indeed the six roots of $x^{6}-2$ are $\alpha, \omega \alpha, \omega^{2} \alpha, \omega^{3} \alpha, \omega^{4} \alpha$ and $\omega^{5} \alpha$. It follows that $x^{6}-2$ does split in this field. On the other hand, we must include α and

$$
\omega=\frac{\omega \alpha}{\alpha} .
$$

Lemma 8.5. Let $f(x) \in K[x]$ and suppose that L / K is an extension of K over which $f(x)$ splits,

$$
f(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right) \ldots\left(x-\alpha_{n}\right)
$$

where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in L$.
Then $M=K\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ is a splitting field of f.
Proof. Clear.

Lemma 8.6. Let $f(x) \in K[x]$ be a polynomial.
Then $f(x)$ has a splitting field.
Proof. By (8.5) it suffices to find a field extension L / K in which $f(x)$ splits. The proof is by induction on the degree d of $f(x)$. If $d=1$, then $f(x)$ is a linear polynomial,

$$
a x+b=a(x-\alpha),
$$

where $\alpha=-b / a \in K$. Thus K / K is a splitting field for f in this case.
Now suppose that the result is true for any field extension of degree less than n.

Suppose that $f(x)$ is irreducible. In this case $f(x)$ is also prime, as $K[x]$ is a UFD. But then $\langle f(x)\rangle$ is a prime ideal and the quotient ring

$$
\frac{K[x]}{\langle f(x)\rangle}
$$

is in fact a field L, an extension of K. Further if α denotes the left coset $x+\langle f(x)\rangle$, then $L=K(\alpha)$, and α is a root of $f(x)$. Thus we may factor $f(x)$ as

$$
f(x)=(x-\alpha) g(x),
$$

where $g(x) \in L[x]$ has degree $n-1$.
Replacing K by L we may assume that $f(x)$ is reducible. Suppose that

$$
f(x)=g(x) h(x),
$$

where both $g(x)$ and $h(x)$ have degree at least one. We proceed in two steps. First we find a field extension, M / K in which $g(x)$ splits. Then we find a field extension L / M for which $h(x)$ splits. It is clear that we are able to do this, as both $g(x)$ and $h(x)$ have degree smaller than n. In this case $f(x)$ clearly splits in L / K.

Now we know that splitting fields exist, we turn to the problem of showing that they are unique. At this point there arises a small problem. The idea is to apply the same argument as the one above. The problem is that when we carry out our inductive step, in the case that $f(x)$ is reducible, we will have two intermediate field extensions M / K and M^{\prime} / K. We then we want to argue that L / M and L^{\prime} / M^{\prime} are isomorphic extensions. In fact we want to slightly enlarge our notion of two isomorphic field extensions.

Definition 8.7. The category of field extensions has as objects field extensions L / K and as morphisms between objects L / K and L^{\prime} / K^{\prime}
pairs of ring homomorphisms $\phi: K \longrightarrow K^{\prime}$ and $\psi: L \longrightarrow L^{\prime}$ such that the following diagram commutes,

Of course, once we have a category, we have a notion of isomorphism; this translates to the condition that both ϕ and ψ are isomorphisms.

Lemma 8.8. Let L / K be a primitive field extension, where $\alpha \in L$. Suppose we are given a ring homomorphism $\phi: K \longrightarrow K^{\prime}$ and a field extension L^{\prime} / K^{\prime}. Suppose $\beta \in L^{\prime}$.

Then we may find a ring homomorphism $\psi: L \longrightarrow L^{\prime}$ extending ϕ which sends α to β, if and only if β is a root of the image of the minimum polynomial of α.

Proof. One direction is clear. Suppose that we can find such a ψ. Then

$$
\begin{aligned}
\phi\left(m_{\alpha}\right)(\beta) & =\psi\left(m_{\alpha}\right)(\psi(\alpha)) \\
& =\psi\left(m_{\alpha}(\alpha)\right) \\
& =0 .
\end{aligned}
$$

Now suppose that the converse is true. We may as well suppose that $L^{\prime}=K^{\prime}(\beta)$. Then

$$
L \simeq \frac{K[x]}{\left\langle m_{\alpha}(x)\right\rangle} \quad \text { and } \quad L^{\prime} \simeq \frac{K^{\prime}[x]}{\left\langle m_{\beta}(x)\right\rangle} .
$$

But as β is a root of $\phi\left(m_{\alpha}(x)\right)$, it follows that $m_{\beta}(x)$ divides $\phi\left(m_{\alpha}(x)\right)$. Define a ring homomorphism

$$
f: K[x] \longrightarrow \frac{K^{\prime}[x]}{\left\langle m_{\beta}(x)\right\rangle}
$$

as the composition of the ring homomorphism

$$
K[x] \longrightarrow K^{\prime}[x]
$$

whose existence is guaranteed by the universal property of a polynomial ring, and the canonical projection,

$$
K^{\prime}[x] \longrightarrow \frac{K^{\prime}[x]}{\left\langle m_{\beta}(x)\right\rangle} .
$$

We have already seen that $m_{\alpha}(x)$ is in the kernel I of f, so that $\left\langle m_{\alpha}(x)\right\rangle \subset I$. Thus by the universal property of the quotient map,
there is an induced map

$$
\frac{K[x]}{\left\langle m_{\alpha}(x)\right\rangle} \longrightarrow \frac{K^{\prime}[x]}{\left\langle m_{\beta}(x)\right\rangle} .
$$

Via the two isomorphisms above, this induces a ring homomorphism

$$
\psi: L \longrightarrow L^{\prime}
$$

which extends ϕ and sends α (corresponding to $\left.x+\left\langle m_{\alpha}(x)\right\rangle\right)$ to β.
Lemma 8.9. Suppose we are given a ring homomorphism $\phi: K \longrightarrow$ K^{\prime}. Let $f(x) \in K[x]$ be a polynomial and let $f^{\prime}(x)$ be the corresponding polynomial in $K^{\prime}[x]$. Let L / K be a splitting field for $f(x)$ and let L^{\prime} / K^{\prime} be a field in which $f^{\prime}(x)$ splits. Then there is an induced morphism (ϕ, ψ), in the category of field extensions, that is, there is a ring homomorphism $\psi: L \longrightarrow L^{\prime}$ such that the following diagram commutes,

If further ϕ is an isomorphism and L^{\prime} / K^{\prime} is a splitting field for $f^{\prime}(x)$, then so is ψ.

Proof. The proof proceeds by induction on the degree n of the field extension L / K. If the degree is one, then there is nothing to prove, as in this case $L=K$ and we make take $\psi=\phi$.

So suppose that the result is true for any field extension of degree less than n. Pick a root $\alpha \in L$ of $f(x)$, which is not in K. Let $m(x)$ be the minimum polynomial of α. Then $m(x)$ divides $f(x)$, as α is a root of $f(x)$. Let $m^{\prime}(x) \in K^{\prime}[x]$ be the polynomial corresponding to $m(x)$. As $f^{\prime}(x)$ splits in L^{\prime}, it follows that there is an element $\beta \in L^{\prime}$, which is a root of $m^{\prime}(x)$. By (8.8) we may find a ring homomorphism π extending ϕ,

As $[K(\alpha): K]>1$, it follows by the Tower Law that $[L: K(\alpha)]<[L:$ K]. By induction, we can find ψ extending π,

Since ψ extends π and π extends ϕ, it follows that ψ extends ϕ, as required.

Now suppose that L^{\prime} / K^{\prime} is a splitting field for $f^{\prime}(x)$ and that ϕ is an isomorphism. As ψ is a ring homomorphism between fields, it follows that ψ is injective. It follows that

$$
[L: K] \leq\left[L^{\prime}: K^{\prime}\right]
$$

Replacing ϕ by its inverse, by symmetry we also get

$$
\left[L^{\prime}: K^{\prime}\right] \leq[L: K]
$$

Thus

$$
[L: K]=\left[L^{\prime}: K^{\prime}\right]
$$

But any linear injective map between two finite dimensional vector spaces of the same dimension is automatically a bijection, so that ψ is in fact an isomorphism.

We can use the result above to give a complete description of finite fields. First a couple of useful results.

Definition 8.10. Let G be a group. The exponent of G is the least common multiple of the orders of the elements of G.

Lemma 8.11. Let G be a finite abelian group of order n.
Then G has an element of order the exponent m of G. In particular $m=n$ if and only if G is cyclic.

Proof. By the classification of finitely generated abelian groups, we may find integers $m_{1}, m_{2}, \ldots, m_{k}$ such that

$$
G \simeq \mathbb{Z}_{m_{1}} \times \mathbb{Z}_{m_{2}} \times \cdots \times \mathbb{Z}_{m_{k}}
$$

where m_{i} divides m_{i+1}. In this case $m=m_{k}$ and so it is clear that there are elements of order $m=$.

Lemma 8.12. Let G be a finite subgroup of the multiplicative group of a field F.

Then G is cyclic.

Proof. Let m be the exponent of G and let n be the order of G. Now G is abelian as F is a field. Thus $m \leq n$ and for every element α of G, $\alpha^{m}=1$, so that every element of G is a root of the polynomial

$$
x^{m}-1 \in F[x] .
$$

But a polynomial of degree m has at most m roots, and so $n \leq m$. But then $m=n$ and G is cyclic.

Theorem 8.13. Let L be a finite field of order $q=p^{n}$.
Then the elements of L are the q roots of the polynomial $x^{q}-x$. In particular L is the splitting field of the polynomial $x^{q}-x$. Furthermore there is an element $\alpha \in L$ such that $L=\mathbb{F}_{p}(\alpha)$.

Proof. Let G be the set of non-zero elements of L. Then G is a finite subgroup of the multiplicative group. Thus the elements of G are precisely the $q-1$ roots of the polynomial

$$
x^{q-1}-1 .
$$

Thus the elements of L are indeed the roots of the polynomial

$$
x^{q}-x .
$$

Let α be a generator of the cyclic group G. Then $G=\langle\alpha\rangle$, so that certainly $L=\mathbb{F}(\alpha)$.

