
9. Normal and Separable extensions

Now we turn to the question, given a field extension, when is there
some polynomial for which it is a splitting field?

Definition 9.1. Let L/K be an algebraic field extension. We say that
L/K is normal if given any irreducible polynomial f(x) ∈ K[x] such
that f(x) has at least one root in L then f(x) splits in L.

Proposition 9.2. Let L/K be a field extension.
Then L/K is a finite normal extension if and only if it is the splitting

field of some polynomial f(x) ∈ K[x].

Proof. Suppose that L/K is normal and finite. Pick α1, α2, . . . , αn such
that

L = K(α1, α2, . . . , αn).

Let mi(x) be the minimum polynomial of αi. Then mi(x) splits over
L, as L/K is normal. Thus f(x), the product of all the polynomials
mi(x), splits over L/K. It follows that L/K is a splitting field for f(x).

Now suppose that L/K is the splitting field for some polynomial
f(x). Pick a monic irreducible polynomial m(x) with a root α in L (so
that in fact m(x) is the minimum polynomial of α over K). Let M/L
be a splitting field for m(x) ∈ L[x]. It suffices to prove that L = M .

Pick any root β ∈ M of m(x). We have to prove that β ∈ L.
Consider the following lattice of inclusions,
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Observe first that the extensions K(α)/K and K(β)/K are isomorphic,
as α and β have the same minimal polynomial. Similarly note that the
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extensions L(α)/K(α) and L(β)/K(β) are isomorphic, as both exten-
sions are splitting fields for f(x). It follows, by the tower law, that

[L(α) : K] = [L(β) : K].

But by the tower Law again,

[L(α) : K] = [L(α) : L][L : K] and [L(β) : K] = [L(β) : L][L : K],

so that
[L(α) : L] = [L(β) : L].

As α ∈ L, the LHS is one. But then β ∈ L as required. �

We note one rather easy consequence of (9.2),

Lemma 9.3. Let L/K be a finite normal extension and let M be an
intermediary field.

Then L/M is normal.

Proof. By (9.2), L/K is the splitting field for some polynomial f(x) ∈
K[x]. But then L/M is a splitting field for the same polynomial and
again by (9.2) it follows that L/M is normal.

Alternatively we could just prove this directly. Suppose that α ∈ L
is a root of f(x) ∈ M [x] an irreducible polynomial. Let m(x) be the
minimum polynomial of α over K. Then f(x) divides m(x) in M [x].
As m(x) splits in L, then so does f(x). �

Definition 9.4. Let L/K be a field extension.
A normal closure for L/K is a field N/L such that N/K is nor-

mal, and there are no proper intermediary fields, between N and L,
with this property.

Lemma 9.5. Let L/K be a finite extension.
Then a normal closure for L/K exists and any two such are isomor-

phic over L.

Proof. Let α1, α2, . . . , αn generate L/K. Let N/L be a splitting field for
the product of the minimum polynomials. Then N/L is a splitting field
for the same polynomial, so that N/K is normal. But clearly any other
normal closure must be a splitting field for the same polynomials. �

Example 9.6. Consider the field extension L = Q(α)/Q = K, where
α is a real cube root of 2. This extension is not normal. Indeed the
minimum polynomial of α is x3−2 ∈ Q[x]. But x3−2 certainly does not
split in this field, as the other two roots of this polynomial, considered
as elements of C, are not even real.

In particular L/K is not the splitting field for any polynomial. Now
suppose N/K is a normal closure for L/K. Then N/K is normal and
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L is an intermediary field. Even though N/L is normal, in fact L/K
is not.

In Galois Theory, the main idea is to relate the structure of the in-
termediate fields to the group of automorphisms of the field extension.
In practice the main issue is to establish that there are enough auto-
morphisms to start with. In turn the only issue is to show that there
are enough roots.

Definition 9.7. Let K be a field and let m(x) ∈ K[x] be an irreducible
polynomial.

We say that m(x) is separable if m(x) does not have any repeated
roots in a splitting field. We say that an arbitrary polynomial is sep-
arable, if every irreducible factor is separable.

Let L/K be a field extension. We say that L/K is a separable
extension, if the minimum polynomial of every element of L is sepa-
rable.

Definition 9.8. Let R be a commutative ring. The formal deriva-
tive is a function

D : R[x] −→ R[x]

such that if f(x) ∈ R[x], with

f(x) = anx
n + an−1x

n−1 + · · ·+ a0,

then f ′(x) = D(f(x)), the formal derivative of f(x), is defined as

f ′(x) = nanx
n−1 + (n− 1)an−1x

n−2 + . . . a1.

Lemma 9.9. The formal derivative is an R-linear map (considering
R[x] as a module over R, by restriction of scalars) which satisfies Leib-
niz’s rule, that is,

D(fg) = D(f)g + fD(g).

Further if we are given a ring homomorphism φ : R −→ S, then the
formal derivative S[x] −→ S[x] is nothing but the map obtained by
extending scalars.

Proof. Linearity is easy to check. Now consider the equation

D(fg) = D(f)g + fD(g).

Fixing g, note that both sides are linear functions R[x] −→ R[x], of f .
Indeed the LHS is the composition of the two linear maps, multiplica-
tion by g and D, and composition of linear maps, is linear. Similarly
the RHS is a sum of two linear maps, where one map is the composi-
tion the other way. As R[x] is freely generated by the powers of x, we
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may as well suppose that f(x) = xm. Similarly we may suppose that
g(x) = xn. In this case the LHS is

D(xm+n) = (m+ n)xm+n−1,

and the RHS is

D(xm)xn + xmD(xn) = (mxm−1)xn + xm(nxn−1)

= (m+ n)xm+n−1,

as required.
The last statement is clear, since both functions are linear and have

the same effect on xn. �

Lemma 9.10. Let f(x) be a polynomial over K. Then f has a repeated
root if and only if f(x) and f ′(x) have a common zero in some splitting
field.

Proof. By the last statement of (9.9), passing to a splitting field of
f(x), we may as well suppose that f(x) splits in K.

Suppose that f(x) has a repeated root. Then f(x) = (x − α)2g(x),
for some polynomial g(x). In this case,

f ′(x) = 2(x− α)g(x) + (x− α)2g′(x),

so that α is a common root of f(x) and f ′(x).
Now suppose that α is a common root of f(x) and f ′(x). Then we

may write
f(x) = (x− α)g(x),

so that
f ′(x) = g(x) + (x− α)g′(x).

Thus α must be a root of g(x). But then x − α divides g(x) and α is
a repeated root of f(x). �

Lemma 9.11. Let m(x) ∈ K[x] be an irreducible polynomial over a
field K.

Then m(x) has a repeated root if and only if m′(x) = 0.
In particular m(x) is inseparable if and only if

m(x) =
∑

aix
pi,

where p is the characteristic.

Proof. There is no harm in assuming that m(x) is monic. By (9.10)
m(x) has a repeated root if and only if m(x) and m′(x) have a common
root α. As m(x) is irreducible, it follows that m(x) is he minimum
polynomial of α and so m(x) divides m′(x). As m′(x) has degree one
less than m(x), m′(x) = 0. �
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Proposition 9.12. Let L/K be a finite field extension.
If L/K is not separable then [L : K] is divisible by the characteristic.

In particular every field extension in characteristic zero is separable.

Proof. Pick α ∈ L such that m(x), the minimum polynomial of α, is
inseparable. By (9.11) m has degree a multiple of p. In particular p
divides divide the LHS of

[L : K] = [L : K(α)][K(α) : K]

at it divides the RHS. �

Definition-Lemma 9.13. Fq denotes the unique field of order q, where
q is a power of a prime.

Proof. Suppose that F is a finite field of order q = pn. Then by (8.13) L
is the splitting field of xq−x. It follows that F is unique, by uniqueness
of the splitting field.

Now we turn to existence. Let F be the splitting field of xq − x. As

D(xq − x) = qxq−1 − 1 = −1

has no zeroes whatsoever, it certainly has no zeroes in common with
xq − x. Thus xq − x has q distinct zeroes in F and so F has at least q
elements. But we have already seen that this implies that F has order
q. �

Example 9.14. Let L = Fp(t) and let K be the subfield Fp(t
p) = Fp(s),

where s = tp.

Then L/K is a primitive extension, generated by t. Consider the
polynomial

m(x) = xp − s ∈ K[x].

Then t is a root of m(x). On the other hand, we have

m(x) = xp − s
= xp − tp

= (x− t)p ∈ L[x].

Thus if we can show that m(x) is irreducible, it would follow that
the extension L/K is inseparable of degree p. This follows easily from
the result below.

Theorem 9.15 (Einstein’s Criteria: Bis). Let

f(x) = anx
n + an−1x

n−1 + · · ·+ a0 ∈ R[x] = Fp[s][x],

be a polynomial, and fix an irreducible polynomial p = p(s) ∈ R. Sup-
pose that p does not divide the leading coefficient an of f(x), but it does
divide the rest, whilst p2 does not divide a0.
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Then f(x) ∈ K[x] = Fp(s)[x] is irreducible.

Proof. We first apply Gauss’ Lemma. If we let R = Fp[s] then the field
of fractions of R is K. As f(x) ∈ R[x], Gauss’ Lemma informs us that
it is sufficient to prove that f(x) is irreducible in R[x].

Suppose not. Then we could find g(x) and h(x) ∈ R[x] such that

f(x) = g(x)h(x).

Suppose that

g(x) = blx
l+bl−1x

l−1+· · ·+b0 and h(x) = cmx
m+cm−1x

m−1+· · ·+c0
Let

R −→ R/〈p〉 = F,

denote reduction modulo p. As R is the polynomial ring over a field
and p is irreducible, we have already seen that F is a field. In fact F is
also finite, of characteristic p, so in fact it is isomorphic to Fq, where q
is a power of a prime. We will not need this.

As with the proof of Eisenstein’s criteria, this map determines, by
the universal property of a polynomial ring, a map

R[x] −→ F [x]

In both maps, reduction modulo p, is denoted by a bar. We have

xn = m̄(x)

= f̄(x)ḡ(x).

As F [x] is a UFD and x ∈ F [x] is prime, in fact f̄(x) = xl and ḡ(x) =
xm. But then b̄0 = c̄0 = 0. Thus p divides both b0 and c0. But then p2

divides a0 = b0c0. �
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