PRACTICE PROBLEMS FOR THE FIRST MIDTERM

1. Give the definition of:
(i) a module.
(ii) an R-linear map.
(iii) a finitely generated module.
(iv) a cyclic module.
(v) a free module.
(vi) a short exact sequence.
(vii) a Noetherian module.
(viii) a Noetherian ring.
(ix) a bilinear map.
(x) the tensor product.
(xi) a symmetric (alternating) bilinear map.
(xii) the symmetric (wedge) product.
(xiii) the determinant.
(xiv) a companion matrix.
(xv) a Jordan block.
(xvi) Rational canonical form.
(xvii) Jordan canonical form.
2. Show that $R \llbracket x \rrbracket$ is Noetherian.
3. Show that if M and N are two Noetherian R-modules over a ring R then $M \underset{R}{\otimes} N$ is Noetherian.
4. Show that

$$
\mathbb{Q} / \mathbb{Z}{\underset{\mathbb{Z}}{\mathbb{Q}}}_{\otimes}^{\mathbb{Q}} / \mathbb{Z}=0 .
$$

5. Define the rank of any finitely generated module over a PID.
6. Suppose that

$$
M \longrightarrow N \longrightarrow P \longrightarrow 0
$$

is a sequence of R-modules.
Show that

$$
0 \longrightarrow \operatorname{Hom}_{R}(P, Q) \longrightarrow \operatorname{Hom}_{R}(N, Q) \longrightarrow \operatorname{Hom}_{R}(M, Q)
$$

is left exact for all R-modules Q if and only if the first sequence is right exact.
7. Find the characteristic polynomials of

$$
A=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cccc}
5 & 2 & -8 & -8 \\
-6 & -3 & 8 & 8 \\
-3 & -1 & 3 & 4 \\
3 & 1 & -4 & -5
\end{array}\right)
$$

Are A and B similar? Find their Jordan canonical form.

