
10. Linear congruences

In general we are going to be interested in the problem of solving
polynomial equations modulo an integer m. Following Gauss, we can
work in the ring Zm and find all solutions to polynomial equations with
coefficients in this ring. One huge advantage of this approach is that
we can count the number of solutions in the ring Zm, simply because
Zm is finite.

As a warm up we consider linear equations. It is easy to do the case
of one equation.

Theorem 10.1. Let m > 1 be a natural number and let a and b be
integers. Let d = (a,m).

The equation

ax ≡ b mod m

has a solution if and only if d|b.
In this case, there is one solution, call it x0, to the equation

(a/d)x = (b/d) ≡ mod m/d,

and there are d solutions

x0 x0 +
m

d
x0 + 2

m

d
. . . and x0 + (d− 1)

m

d
,

to the equation

ax ≡ b mod m.

Proof. Solving the equation

ax ≡ b mod m

is equivalent to solving the equation

ax + (−m)y = b

in integers x and y.
Indeed, if x0 is a solution to

ax ≡ b mod m

then ax0 ≡ b mod m. It follows that ax0− b is divisible by m, that is,
there is an integer y0 such that ax0 − b = my0. Rewriting, we see that

ax0 + (−m)y0 = b,

so that (x0, y0) is a solution to ax + (−m)y = b.
Vice-versa, if (x0, y0) is a solution of

ax + (−m)y = b
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then ax0 ≡ b mod m so that x0 is a solution of

ax ≡ b mod m.

Now we already know that the linear Diophantine equation

ax + (−m)y = b

has a solution if and only if d|b. In this case, pick a solution (x0, y0) to
the equation

(a/d)x + (−m/d)y = b/d.

Then every solution to the equation

(a/d)x + (−m/d)y = b/d.

is given by

x = x0 +
mt

d
and y = y0 +

ta

d
.

These are all equivalent modulo m/d, so the equation

(a/d)x ≡ (b/d) mod m/d,

has a unique solution and we get d solutions

x0 x0 +
m

d
x0 + 2

m

d
. . . and x0 + (d− 1)

m

d
,

to the equation
ax ≡ b mod m. �

Question 10.2. Find all solutions of the equation

9x ≡ 15 mod 51.

First note that (9, 51) = 3 and 3|15, so this equation does have a
solution and it is equivalent to the equation

3x ≡ 5 mod 17.

This is also equivalent to the equation

3x + 17y = 5.

We can solve this as usual by applying the Euclidean algorithm

17 = 5 · 3 + 2

3 = 1 · 2 + 1.

Therefore

1 = 3− 2

= 3− (17− 5 · 3)

= 3 · 6 + 17 · −1.
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Multiplying by 5 we get

3 · 30 + 17 · −5 = 5.

Reducing modulo 17 we get

3 · 13 ≡ 5 mod 17.

Thus x = 13 is one possible solution. The others are given by jumps
of 17,

13, 30 and 47.

Now let us turn to the problem of solving simultaneous linear equa-
tions. The interesting feature of this problem is that it is possible to
solve two or more equations with respect to different moduli. Now one
linear equation of the form

ax ≡ b mod m

is equivalent to a collection of equations of the form

x ≡ c mod m

where c might take a collection of values. It follows that working on
each equation one at a time, when the modulus is fixed, we can reduce
our equations to a collection of simultaneous equations

x ≡ c1 mod m1

x ≡ c2 mod m2

...
. . .

...

x ≡ ck mod mk.

Note that these equations might be incompatible. For example, we
cannot solve

x ≡ 0 mod 2

x ≡ 1 mod 2.

In this case any solution is supposed to be both even and odd, which
is impossible.

The problem is when two moduli are not coprime. Amazingly, if the
moduli are coprime there is a simple way to solve a system of equations.

Theorem 10.3 (Chinese remainder theorem). If the moduli m1,m2, . . . ,mr

are pairwise coprime, that is (mi,mj) = 1 for i 6= j, then the system
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of equations

x ≡ c1 mod m1

x ≡ c2 mod m2

...
. . .

...

x ≡ ck mod mr,

has one solution, given by a residue class modulo the product, m =
m1m2 . . .mr.

Proof. This system is completely described, if we fix the moduli and
their order, by a vector (c1, c2, . . . , cr). Even better, we can view replace
ci be a residue class c̄i modulo m. Thus any equation is represented by
a vector

(c̄1, c̄2, . . . , c̄r) ∈ Zm1 × Zm2 × · · · × Zmr .

Now if a is a solution to these equations and b ≡ a mod m then b is
also a solution. Indeed, as mi divides m, it follows that b ≡ a mod mi.
Thus the solutions to this equation are naturally residue classes modulo
m, ā ∈ Zm.

Suppose that a and b ∈ Zm are two solutions to the same equation.
Then a ≡ b mod mi, for all 1 ≤ i ≤ r. Thus mi divides a − b for all
1 ≤ i ≤ r. As (mi,mj) = 1 it follows that the product m divides a− b.
Thus a ≡ b mod m.

Thus each equation has at most one solution. On the other hand, ev-
ery element a ∈ Zm is the solution to the equation with ci ≡ a mod mi.
Note that there are m equations, since we can choose c1, c2, . . . , cr freely.
As Zm also has m equations, it follows that there is a one to one cor-
respondence between equations and solutions. In other words, each
equation has exactly one solution modulo m. �

In fact we have much more than a one to one correspondence between
Zm and the product of the sets Zm1 × Zm2 × · · · × Zmr .

In general, given two rings R and S one can make another ring R⊕S
as follows. The elements of R⊕S are just the elements of the Cartesian
product. We have to decide how to add and how to multiply and then
we have to check the axioms for a ring. To add and multiply, just add
and multiply component by component:

(r1, s1)+(r2, s2) = (r1+r2, s1+s2) and (r1, s1)·(r2, s2) = (r1·r2, s1·s2).
It is not hard to check that this rule of addition and multiplication is
associative. One checks this component by component. (0, 0) plays the
role of zero, (−r,−s) is the additive inverse of (r, s) and (1, 1) plays
the role of one.
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Theorem 10.4 (Chinese remainder theorem, bis). If m1,m2, . . . ,mr

are pairwise coprime natural numbers then the two rings

Zm and Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmr .

are isomorphic.

Proof. We have already written down a bijection between the two un-
derlying sets. It suffices to check that this bijection is a homomorphism,
so that it respects addition, multiplication and sends one to one. But
all of these statements are clear, because the addition and multiplica-
tion on both sides is the natural one inherited from the integers Z. �

Note that this the Chinese remainder theorem is quite useful in prac-
tice. If you want do arithmetic modulo m, it is enough to do arithmetic
modulo mi, for every 1 ≤ i ≤ r. Consider the problem of trying to
solve an equation with vector

(c1, c2, . . . , cr).

If we let ei be the vector with an 1 in the ith entry and zero everywhere
else, then we have

(c1, c2, . . . , cr) = c1e1 + ce2 + · · ·+ crer.

If we can solve the equation with vector ei then we can solve the general
equation by taking the appropriate linear combination.

Suppose that yi is a solution of the equations for the vector ei. Then
the solution to the equations for the vector (c1, c2, . . . , cr) is

c1y1 + c2y2 + · · ·+ cryr.

Consider trying to find yi. We want

yi ≡ 0 mod mj.

Thus yi is a multiple of mj, for all j 6= i, so that yi is a multiple of
m/m + i. Thus

yi = zi
m

mi

.

We want to choose zi so that
m

mi

zi ≡ 1 mod mi.

Putting all of this together, once we have found z1, z2, . . . , zr then

x = c1
m

m1

z1 + c2
m

m2

z2 + · · ·+ cr
m

mr

zr

has the property that
x ≡ ci mod mi,

for all 1 ≤ i ≤ r.
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Question 10.5. Solve the three equations

x = 3 mod 5

x = 7 mod 11

x = 4 mod 13.

We use the method above. We first have to solve

11 · 13z1 = 1 mod 5

5 · 13z2 = 1 mod 11

5 · 11z3 = 1 mod 13.

These reduce to

3z1 = 1 mod 5

10z2 = 1 mod 11

3z3 = 1 mod 13.

These have solutions

z1 = 2 mod 5

z2 = 10 mod 11

z3 = 9 mod 13.

The solution to the equation above is

x = 11 · 13 · 2 · 3 + 5 · 13 · 10 · 7 + 5 · 11 · 9 · 4
≡ 11 · 13 + 5 · 13 · 6− 5 · 11 · 3 mod 5 · 11 · 13

≡ 41 · 13− 5 · 11 · 3 mod 5 · 11 · 13

= −41 · 2 + 41 · 5 · 3− 5 · 11 · 3
= −41 · 2 + 30 · 5 · 3
= 368.

Finally, we deal with the case that the moduli are not necessarily
coprime.

Theorem 10.6. The system of equations

x ≡ c1 mod m1

x ≡ c2 mod m2

...
. . .

...

x ≡ ck mod mr,

has a solution if and only if (mi,mj)|ci− cj for all i and j. In this case
the general solution is a residue class modulo [m1,m2, . . . ,mr].
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In particular a finite set of arithmetic progressions intersects if and
only if any pair of them intersect.

Proof. Suppose that a is a solution. As a ≡ ci mod mi and a ≡ cj
mod mj there are integers k and l such that a = ci + mik and a =
cj +mjl. It follows that ci+mik = cj +mjl, so that ci−cj = mik+mjl.
It follows that (mi,mj)|(ci − cj).

Now suppose that (mi,mj)|(ci− cj) for all i and j. Let p be a prime.
Suppose that mi = peim′

i, where mi is coprime to p. By the Chinese
remainder theorem, it suffices to solve each of these equations modulo
peii . Thus we may assume that m′

i = 1 so that mi = pei are all powers
of the same prime p.

Rearranging we may assume that e1 ≥ e2 ≥ e3 . . . . In this case,
(m1,mj) = mj. If a = c1 then

a ≡ c1 mod mj

≡ cj mod mj.

Thus a = c1 is a solution to these equations. �
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