11. Polynomial congruences

We now want to look at the problem of solving polynomial equations modulo a natural number \(m \). First note that the natural homomorphism
\[
\mathbb{Z} \longrightarrow \mathbb{Z}_m \text{ which sends } a \longrightarrow \bar{a}
\]
extends naturally to a homomorphism
\[
\mathbb{Z}[x] \longrightarrow \mathbb{Z}_m[x] \text{ which sends } f(x) \longrightarrow \bar{f}(x).
\]
If
\[
f(x) = a_0 + a_1 x + \cdots + a_n x^n \quad \text{then} \quad \bar{f}(x) = \bar{a}_0 + \bar{a}_1 x + \bar{a}_2 x^2 + \cdots + \bar{a}_n x^n.
\]

Note also that it makes sense to evaluate \(\bar{f}(x) \) as \(\bar{a} \in \mathbb{Z}_m \). In particular it makes sense to look for zeroes of polynomials in \(\mathbb{Z}_m \).

Note that if \(p \) is a prime then \(\mathbb{Z}_p \) is a field so that \(\mathbb{Z}_p[x] \) is a UFD; every polynomial factors into prime polynomials, uniquely up to order and units. On the other hand, if \(m \) is composite then \(\mathbb{Z}_m \) is not even an integral domain.

Proposition 11.1. Let \(f(x) \in \mathbb{Z}[x] \) and let \(p \) be a prime.
If \(a \) is a root of the congruence \(f(x) \equiv 0 \mod p \) then \(x - \bar{a} \) divides \(\bar{f}(x) \) in the ring \(\mathbb{Z}_p[x] \).

Proof. Since \(\mathbb{Z}_p \) is a field, the ring \(\mathbb{Z}_p[x] \) is a Euclidean domain. Therefore we can divide \((x - \bar{a}) \) into \(\bar{f}(x) \) to get a quotient and a remainder,
\[
\bar{f}(x) = q(x)(x - \bar{a}) + r(x),
\]
where \(r(x) = 0 \) or the degree of \(r(x) \) is less than the degree of \(x - \bar{a} \).

As the degree of \(x - \bar{a} \) is one, it follows that \(r(x) = r \) is a constant. If we plug in \(a \) then we get
\[
0 = \bar{f}(\bar{a}) = q(\bar{a})(\bar{a} - \bar{a}) + r = r.
\]
Thus \(r(x) = 0 \) and so \(x - \bar{a} \) divides \(\bar{f}(x) \). \(\square \)

Theorem 11.2 (Lagrange’s Theorem). If \(p \) is a prime and \(f(x) \in \mathbb{Z}[x] \) has degree \(n \) then the equation \(f(x) \equiv 0 \mod p \) has at most \(n \) roots.

Proof. If \(\bar{a} \) is a root of \(\bar{f}(x) = 0 \) then \((x - a) \) is a linear factor of \(\bar{f}(x) \). As \(\mathbb{Z}_p[x] \) is a UFD, \(\bar{f}(x) \) can have at most \(n \) different linear factors. \(\square \)

Note that this fails in general if \(m \) is composite. For example,
\[
(x - 2)(x - 3) = x^2 - 5x = x(x - 5) \mod 6,
\]
so that 0, 2, 3 and 5 are all roots of the polynomial \(x^2 - 5x \), modulo 6.
Theorem 11.3. Let \(p \) be a prime and let \(f(x) \in \mathbb{Z}[x] \) be a polynomial of degree \(n \).

The number of distinct roots of \(f(x) \) is the degree of the polynomial \((f(x), x^p - x) \). In particular \(f(x) \) has exactly \(n \) roots if and only if \(f(x) \) divides \(x^p - x \).

Proof. Fermat’s theorem implies that if \(a \in \mathbb{Z}_p \) then
\[
a^p = a \in \mathbb{Z}_p.
\]
Thus \(a \) is a root of \(x^p - x \in \mathbb{Z}_p[x] \). It follows that \(x, x - 1, x - 2, \ldots, x + 1 - p \) are all linear factors of \(x^p - x \). As the product
\[
x(x - 1)(x - 2) \ldots (x - p + 1)
\]
has degree \(p \) and it is monic, it follows that
\[
x^p - x = x(x - 1)(x - 2) \ldots (x - p + 1) \in \mathbb{Z}_p[x].
\]
Suppose that \(r \) is a root of \(f(x) \). Then we can write
\[
f(x) = (x - r)^e g(x),
\]
for some natural number \(e \), which we will call the multiplicity. So if \(f(x) \) has roots \(r_1, r_2, \ldots, r_k \) with multiplicities \(e_1, e_2, \ldots, e_k \) then we may write
\[
f(x) = (x - r_1)^{e_1}(x - r_2)^{e_2} \ldots (x - r_k)^{e_k} g(x),
\]
where \(g(x) \in \mathbb{Z}_p[x] \) has no roots. It follows that
\[
(f(x), x^p - x) = (x - r_1)(x - r_2) \ldots (x - r_k).
\]
Clearly this is a polynomial of degree \(k \), the number of roots of \(f(x) \).

If \(f(x) \) has \(n \) distinct roots, then \(r_1 = r_2 = \cdots = r_k \) and \(k = n \) so that \(f(x) \) divides \(x^p - x \). \(\square \)

Corollary 11.4. Let \(d \) be a natural number and let \(p \) be a prime.

If \(d \) divides \(p - 1 \) then the congruence \(x^d \equiv 1 \mod p \) has \(d \) solutions.

Proof. Note that
\[
y^k - 1 = (y - 1)(y^{k-1} + y^{k-2} + \cdots + 1).
\]
By assumption there is an integer \(k \) such that \(p - 1 = dk \). Therefore
\[
x^p - x = x(x^{p-1} - 1) = x(x^d)^k - 1 = x((x^d)^k - 1) = x(x^d - 1)(x^{d(k-1)} + x^{d(k-2)} + \cdots + x^d + 1).
\]
Thus \(x^d - 1 \) divides \(x^p - x \) so that \(x^d - 1 \) has \(d \) distinct roots by (11.3). \(\square \)
Theorem 11.5 (Wilson’s Theorem). If p is a prime number then

$$(p − 1)! \equiv −1 \mod p.$$

Proof. If $p = 2$ then the result is clear. Otherwise p is odd. We have already seen that

$$x^p − x = x(x − 1)(x − 2)\ldots(x − (p + 1)) \mod p.$$

Cancelling a factor of x from both sides, we get

$$x^{p−1} − 1 = (x − 1)(x − 2)\ldots(x − (p + 1)) \mod p.$$

The constant term on the LHS is $−1$ and the constant term on the RHS is

$$(p − 1)!. \quad \square$$