11. Polynomial CONGRUENCES

We now want to look at the problem of solving polynomial equations modulo a natural number m. First note that the natural homomorphism

$$
\mathbb{Z} \longrightarrow \mathbb{Z}_{m} \quad \text { which sends } \quad a \longrightarrow \bar{a}
$$

extends naturally to a homomorphism

$$
\mathbb{Z}[x] \longrightarrow \mathbb{Z}_{m}[x] \quad \text { which sends } \quad f(x) \longrightarrow \bar{f}(x)
$$

If
$f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \quad$ then $\quad \bar{f}(x)=\bar{a}_{0}+\bar{a}_{1} x+\bar{a}_{2} x^{2}+\cdots+\bar{a}_{n} x^{n}$.
Note also that it makes sense to evaluate $\bar{f}(x)$ as $\bar{a} \in \mathbb{Z}_{m}$. In particular it makes sense to look for zeroes of polynomials in \mathbb{Z}_{m}.

Note that if p is a prime then \mathbb{Z}_{p} is a field so that $\mathbb{Z}_{p}[x]$ is a UFD; every polynomial factors into prime polynomials, uniquely up to order and units. On the other hand, if m is composite then \mathbb{Z}_{m} is not even an integral domain.

Proposition 11.1. Let $f(x) \in \mathbb{Z}[x]$ and let p be a prime.
If a is a root of the congruence $f(x) \equiv 0 \bmod p$ then $x-\bar{a}$ divides $\bar{f}(x)$ in the ring $\mathbb{Z}_{p}[x]$.
Proof. Since \mathbb{Z}_{p} is a field, the ring $\mathbb{Z}_{p}[x]$ is a Euclidean domain. Therefore we can divide $(x-\bar{a})$ into $\bar{f}(x)$ to get a quotient and a remainder,

$$
\bar{f}(x)=q(x)(x-\bar{a})+r(x),
$$

where $r(x)=0$ or the degree of $r(x)$ is less than the degree of $x-\bar{a}$. As the degree of $x-\bar{a}$ is one, it follows that $r(x)=r$ is a constant. If we plug in a then we get

$$
\begin{aligned}
0 & =\bar{f}(\bar{a}) \\
& =q(\bar{a})(\bar{a}-\bar{a})+r \\
& =r .
\end{aligned}
$$

Thus $r(x)=0$ and so $x-\bar{a}$ divides $\bar{f}(x)$.
Theorem 11.2 (Lagrange's Theorem). If p is a prime and $f(x) \in \mathbb{Z}[x]$ has degree n then the equation $f(x) \equiv 0 \bmod p$ has at most n roots.
Proof. If \bar{a} is a root of $\bar{f}(x)=0$ then $(x-a)$ is a linear factor of $\bar{f}(x)$. As $\mathbb{Z}_{p}[x]$ is a UFD, $\bar{f}(x)$ can have at most n different linear factors.

Note that this fails in general if m is composite. For example,

$$
(x-2)(x-3)=x^{2}-5 x=x(x-5) \quad \bmod 6
$$

so that $0,2,3$ and 5 are all roots of the polynomial $x^{2}-5 x$, modulo 6 .

Theorem 11.3. Let p be a prime and let $f(x) \in \mathbb{Z}[x]$ be a polynomial of degree n.

The number of distinct roots of $f(x)$ is the degree of the polynomial $\left(f(x), x^{p}-x\right)$. In particular $f(x)$ has exactly n roots if and only if $f(x)$ divides $x^{p}-x$.
Proof. Fermat's theorem implies that if $a \in \mathbb{Z}_{p}$ then

$$
a^{p}=a \in \mathbb{Z}_{p}
$$

Thus a is a root of $x^{p}-x \in \mathbb{Z}_{p}[x]$. It follows that $x, x-1, x-2, \ldots$, $x+1-p$ are all linear factors of $x^{p}-x$. As the product

$$
x(x-1)(x-2) \ldots(x-p+1)
$$

has degree p and it is monic, it follows that

$$
x^{p}-x=x(x-1)(x-2) \ldots(x-p+1) \in \mathbb{Z}_{p}[x] .
$$

Suppose that r is a root of $f(x)$. Then we can write

$$
f(x)=(x-r)^{e} g(x),
$$

for some natural number e, which we will call the multiplicity. So if $f(x)$ has roots $r_{1}, r_{2}, \ldots, r_{k}$ with multiplicities $e_{1}, e_{2}, \ldots, e_{k}$ then we may write

$$
f(x)=\left(x-r_{1}\right)^{e_{1}}\left(x-r_{2}\right)^{e_{2}} \ldots\left(x-r_{k}\right)^{e_{k}} g(x),
$$

where $g(x) \in \mathbb{Z}_{p}[x]$ has no roots. It follows that

$$
\left(f(x), x^{p}-x\right)=\left(x-r_{1}\right)\left(x-r_{2}\right) \ldots\left(x-r_{k}\right) .
$$

Clearly this is a polynomial of degree k, the number of roots of $f(x)$.
If $f(x)$ has n distinct roots, then $r_{1}=r_{2}=\cdots=r_{k}$ and $k=n$ so that $f(x)$ divides $x^{p}-x$.
Corollary 11.4. Let d be a natural number and let p be a prime.
If d divides $p-1$ then the congruence $x^{d} \equiv 1 \bmod p$ has d solutions.
Proof. Note that

$$
y^{k}-1=(y-1)\left(y^{k-1}+y^{k-2}+\cdots+1\right)
$$

By assumption there is an integer k such that $p-1=d k$. Therefore

$$
\begin{aligned}
x^{p}-x & =x\left(x^{p-1}-1\right) \\
& =x\left(x^{d k}-1\right) \\
& =x\left(\left(x^{d}\right)^{k}-1\right) \\
& =x\left(x^{d}-1\right)\left(x^{d(k-1)}+x^{d(k-2)}+\cdots+x^{d}+1\right) .
\end{aligned}
$$

Thus $x^{d}-1$ divides $x^{p}-x$ so that $x^{d}-1$ has d distinct roots by (11.3).

Theorem 11.5 (Wilson's Theorem). If p is a prime number then

$$
(p-1)!\equiv-1 \quad \bmod p
$$

Proof. If $p=2$ then the result is clear. Otherwise p is odd. We have already seen that

$$
x^{p}-x=x(x-1)(x-2) \ldots(x-(p+1)) \quad \bmod p .
$$

Cancelling a factor of x from both sides, we get

$$
x^{p-1}-1=(x-1)(x-2) \ldots(x-(p+1)) \quad \bmod p .
$$

The constant term on the LHS is -1 and the constant term on the RHS is

$$
(p-1)!.
$$

