
12. Beyond Newton-Raphson

Now let us consider the general problem of trying to find roots mod-
ulo m,

f(x) ≡ 0 mod m.

Let cf (m) be the number of solutions modulo m.

Theorem 12.1. The function

cf : N −→ N,
is multiplicative.

Proof. Suppose that m and n are coprime. Suppose we are given a
solution a to the equation

f(x) ≡ 0 mod mn

Then
f(a) ≡ 0 mod mn

so that

f(a) ≡ 0 mod m and f(a) ≡ 0 mod n.

Thus we get a solution to the equations

f(x) ≡ 0 mod m and f(x) ≡ 0 mod n.

Now suppose we are given solutions b and c to the equations

f(x) ≡ 0 mod m and f(x) ≡ 0 mod n.

It follows that

f(b) ≡ 0 mod m and f(c) ≡ 0 mod n.

By the Chinese remainder theorem there is a unique residue class a
modulo mn such that

a ≡ b mod m and a ≡ c mod n.

More to the point, as

f(a) ≡ f(b) ≡ 0 mod m and f(a) ≡ f(c) ≡ 0 mod n

again by the Chinese remainder theorem,

f(a) ≡ 0 mod mn,

so that a is a solution to the equation

f(x) ≡ 0 mod mn.

It is then clear that

cf (mn) = cf (m)cf (n). �
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By the fundamental theorem of arithmetic, it follows that if we want
to solve the equation

f(x) ≡ 0 mod m

it suffices to deal with the case that m = pe, that is, we just have to
solve

f(x) ≡ 0 mod pe,

where p is a prime and e is a natural number.
Note that if

f(a) ≡ 0 mod pe,

then certainly

f(a) ≡ 0 mod p.

However we can’t go quite go backwards. For example if a is a solution
to the equation

f(x) ≡ 0 mod p.

it need not be a solution to the equation

f(x) ≡ 0 mod p2.

From the first equation we know that f(a) is a multiple of p but not
necessarily a multiple of p2. On the other hand, note that

a a+ p a+ 2p . . . a+ (p− 2)p and a+ (p− 1)p,

are all different modulo p2 and all equivalent to a modulo p. So we
have to check to see which of these integers are solutions modulo p2.

Fortunately there is a much more elegant and convenient way to
proceed. The idea is to think of the problem of going from a solution
modulo pe−1 to a solution modulo pe as a problem of approximation.

The classic method of approximation proceeds as follows. Suppose
you want to approximate the value of ξ =

√
2. This is a real number.

Suppose we already have an approximation x0, where we assume that
the difference h = ξ − x0 is relatively small. For example, 2.25 = 9/4
is a perfect square, so that x0 = 3/2 is a reasonable approximation to√

2.
Introduce the function f(x) = x2. Suppose that f ′(x0) 6= 0. Write

down the Taylor series for f(x) centred around x0. We have

0 = f(ξ)

= f(x0) + hf ′(x0) +
h2

2
f ′′(x0) + . . .

' f(x0) + hf ′(x0).
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Here we assume that the terms involving h2, h3 are small, as h is small.
It follows that a good approximation ĥ for h is given by solving

f(x0) + ĥf ′(x0) = 0.

This gives

x1 = x0 −
f(x0)

f ′(x0)
,

the usual formula for Newton-Raphson approximation. If x0 is close
enough to ξ then x1 will be closer to ξ.

We try the same idea to go from a solution modulo pe to a solution
modulo pe+1. A polynomial has a very simple Taylor series that always
ends with the term of order hn, where n is the degree of f ,

f(x0 + h) = f(x0) + f(x0)h+
f ′(x0)

2
h2 + · · ·+ fn(x0)

n!
hn.

Consider a term of the form cjx
j in the polynomial f(x). If we

differentiate this k times then we have to multiply by

j(j − 1) . . . (j − k + 1).

This term then makes a contribution of

j(j − 1) . . . (j − k + 1)

k!
cjx

j−k
0 =

(
j

k

)
cjx

j−k
0 .

In particular if cj is an integer then this contribution is an integer.
Thus if x0 is an integer and f(x) ∈ Z[x] then the coefficients of the
Taylor series expansion are integers.

Suppose that x0 is a solution to the equation

f(x) ≡ 0 mod pe,

so that

f(x0) ≡ 0 mod pe.

Now there are p residue classes modulo pe+1 that have residue modulo
pe, namely,

x0, x0+p
e, x0+2pe, . . . x0+(p−2)pe and x0+(p−1)pe.

So we are looking for a solution of the form

x0 + tpe,

where t is an integer, that is, we are trying to find t such that

f(x0 + tpe) ≡ 0 mod pe+1.
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Note that if n = tpe then h2, h3, . . . , are all zero modulo pe+1. So if we
use the Taylor series expansion, we don’t just get an approximation,
we get an identity,

f(x0 + tpe) ≡ f(x0) + f ′(x0)tp
e mod pe+1.

If we want the LHS to be zero, this says

tpef ′(x0) ≡ −f(x0) mod pe+1.

By assumption there is an integer c such that f(x0) = cpe. So, can-
celling the common factor of pe, we get the linear congruence

tf ′(x0) ≡ c mod p.

There are three cases.

(1) f ′(x0) is divisible by p and c is not. There are no solutions in
this case.

(2) Both f ′(x0) and c are divisible by p. There are p solutions in
this case.

(3) f ′(x0) is not divisible by p. There is one solution in this case.

We think of the first and second case as being degenerate. Both
cases are characterised by the fact that f ′(x0) = 0, modulo p. We call
x0 a singular solution. In case (3) we can solve for t, using the usual
formula.

To summarise, if we start with a solution x0 to the equation

f(x) ≡ 0 mod p,

and f ′(x0) 6= 0 mod p then we can successive solutions, modulo higher
and higher powers of p. If x0 is a singular solution then, at each step,
either there are no solutions modulo a higher power of p, or there are
p solutions.

In fact the hardest part of this process is to find the solutions modulo
p, but that is another story.
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