12. Beyond Newton-Raphson

Now let us consider the general problem of trying to find roots modulo m,

$$
f(x) \equiv 0 \quad \bmod m
$$

Let $c_{f}(m)$ be the number of solutions modulo m.
Theorem 12.1. The function

$$
c_{f}: \mathbb{N} \longrightarrow \mathbb{N}
$$

is multiplicative.
Proof. Suppose that m and n are coprime. Suppose we are given a solution a to the equation

$$
f(x) \equiv 0 \quad \bmod m n
$$

Then

$$
f(a) \equiv 0 \quad \bmod m n
$$

so that

$$
f(a) \equiv 0 \quad \bmod m \quad \text { and } \quad f(a) \equiv 0 \quad \bmod n .
$$

Thus we get a solution to the equations

$$
f(x) \equiv 0 \quad \bmod m \quad \text { and } \quad f(x) \equiv 0 \quad \bmod n
$$

Now suppose we are given solutions b and c to the equations

$$
f(x) \equiv 0 \quad \bmod m \quad \text { and } \quad f(x) \equiv 0 \quad \bmod n
$$

It follows that

$$
f(b) \equiv 0 \quad \bmod m \quad \text { and } \quad f(c) \equiv 0 \quad \bmod n .
$$

By the Chinese remainder theorem there is a unique residue class a modulo $m n$ such that

$$
a \equiv b \quad \bmod m \quad \text { and } \quad a \equiv c \quad \bmod n .
$$

More to the point, as

$$
f(a) \equiv f(b) \equiv 0 \quad \bmod m \quad \text { and } \quad f(a) \equiv f(c) \equiv 0 \quad \bmod n
$$

again by the Chinese remainder theorem,

$$
f(a) \equiv 0 \quad \bmod m n,
$$

so that a is a solution to the equation

$$
f(x) \equiv 0 \quad \bmod m n .
$$

It is then clear that

$$
c_{f}(m n)=\underset{1}{c_{f}}(m) c_{f}(n) .
$$

By the fundamental theorem of arithmetic, it follows that if we want to solve the equation

$$
f(x) \equiv 0 \quad \bmod m
$$

it suffices to deal with the case that $m=p^{e}$, that is, we just have to solve

$$
f(x) \equiv 0 \quad \bmod p^{e},
$$

where p is a prime and e is a natural number.
Note that if

$$
f(a) \equiv 0 \quad \bmod p^{e},
$$

then certainly

$$
f(a) \equiv 0 \quad \bmod p
$$

However we can't go quite go backwards. For example if a is a solution to the equation

$$
f(x) \equiv 0 \quad \bmod p
$$

it need not be a solution to the equation

$$
f(x) \equiv 0 \quad \bmod p^{2}
$$

From the first equation we know that $f(a)$ is a multiple of p but not necessarily a multiple of p^{2}. On the other hand, note that

$$
a \quad a+p \quad a+2 p \ldots a+(p-2) p \quad \text { and } \quad a+(p-1) p
$$

are all different modulo p^{2} and all equivalent to a modulo p. So we have to check to see which of these integers are solutions modulo p^{2}.

Fortunately there is a much more elegant and convenient way to proceed. The idea is to think of the problem of going from a solution modulo p^{e-1} to a solution modulo p^{e} as a problem of approximation.

The classic method of approximation proceeds as follows. Suppose you want to approximate the value of $\xi=\sqrt{2}$. This is a real number. Suppose we already have an approximation x_{0}, where we assume that the difference $h=\xi-x_{0}$ is relatively small. For example, $2.25=9 / 4$ is a perfect square, so that $x_{0}=3 / 2$ is a reasonable approximation to $\sqrt{2}$.

Introduce the function $f(x)=x^{2}$. Suppose that $f^{\prime}\left(x_{0}\right) \neq 0$. Write down the Taylor series for $f(x)$ centred around x_{0}. We have

$$
\begin{aligned}
0 & =f(\xi) \\
& =f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right)+\frac{h^{2}}{2} f^{\prime \prime}\left(x_{0}\right)+\ldots \\
& \simeq f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right)
\end{aligned}
$$

Here we assume that the terms involving h^{2}, h^{3} are small, as h is small. It follows that a good approximation \hat{h} for h is given by solving

$$
f\left(x_{0}\right)+\hat{h} f^{\prime}\left(x_{0}\right)=0 .
$$

This gives

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)},
$$

the usual formula for Newton-Raphson approximation. If x_{0} is close enough to ξ then x_{1} will be closer to ξ.

We try the same idea to go from a solution modulo p^{e} to a solution modulo p^{e+1}. A polynomial has a very simple Taylor series that always ends with the term of order h^{n}, where n is the degree of f,

$$
f\left(x_{0}+h\right)=f\left(x_{0}\right)+f\left(x_{0}\right) h+\frac{f^{\prime}\left(x_{0}\right)}{2} h^{2}+\cdots+\frac{f^{n}\left(x_{0}\right)}{n!} h^{n} .
$$

Consider a term of the form $c_{j} x^{j}$ in the polynomial $f(x)$. If we differentiate this k times then we have to multiply by

$$
j(j-1) \ldots(j-k+1) .
$$

This term then makes a contribution of

$$
\frac{j(j-1) \ldots(j-k+1)}{k!} c_{j} x_{0}^{j-k}=\binom{j}{k} c_{j} x_{0}^{j-k} .
$$

In particular if c_{j} is an integer then this contribution is an integer. Thus if x_{0} is an integer and $f(x) \in \mathbb{Z}[x]$ then the coefficients of the Taylor series expansion are integers.

Suppose that x_{0} is a solution to the equation

$$
f(x) \equiv 0 \quad \bmod p^{e},
$$

so that

$$
f\left(x_{0}\right) \equiv 0 \quad \bmod p^{e} .
$$

Now there are p residue classes modulo p^{e+1} that have residue modulo p^{e}, namely,
$x_{0}, \quad x_{0}+p^{e}, \quad x_{0}+2 p^{e}, \quad \ldots \quad x_{0}+(p-2) p^{e} \quad$ and $\quad x_{0}+(p-1) p^{e}$.
So we are looking for a solution of the form

$$
x_{0}+t p^{e},
$$

where t is an integer, that is, we are trying to find t such that

$$
f\left(x_{0}+t p^{e}\right) \equiv{ }_{3} 0 \quad \bmod p^{e+1}
$$

Note that if $n=t p^{e}$ then h^{2}, h^{3}, \ldots, are all zero modulo p^{e+1}. So if we use the Taylor series expansion, we don't just get an approximation, we get an identity,

$$
f\left(x_{0}+t p^{e}\right) \equiv f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) t p^{e} \quad \bmod p^{e+1} .
$$

If we want the LHS to be zero, this says

$$
t p^{e} f^{\prime}\left(x_{0}\right) \equiv-f\left(x_{0}\right) \quad \bmod p^{e+1}
$$

By assumption there is an integer c such that $f\left(x_{0}\right)=c p^{e}$. So, cancelling the common factor of p^{e}, we get the linear congruence

$$
t f^{\prime}\left(x_{0}\right) \equiv c \quad \bmod p
$$

There are three cases.
(1) $f^{\prime}\left(x_{0}\right)$ is divisible by p and c is not. There are no solutions in this case.
(2) Both $f^{\prime}\left(x_{0}\right)$ and c are divisible by p. There are p solutions in this case.
(3) $f^{\prime}\left(x_{0}\right)$ is not divisible by p. There is one solution in this case.

We think of the first and second case as being degenerate. Both cases are characterised by the fact that $f^{\prime}\left(x_{0}\right)=0$, modulo p. We call x_{0} a singular solution. In case (3) we can solve for t, using the usual formula.

To summarise, if we start with a solution x_{0} to the equation

$$
f(x) \equiv 0 \quad \bmod p,
$$

and $f^{\prime}\left(x_{0}\right) \neq 0 \bmod p$ then we can successive solutions, modulo higher and higher powers of p. If x_{0} is a singular solution then, at each step, either there are no solutions modulo a higher power of p, or there are p solutions.

In fact the hardest part of this process is to find the solutions modulo p, but that is another story.

