13. Quadratic Residues

We now turn to the question of when a quadratic equation has a solution modulo m. The general quadratic equation looks like

$$
a x^{2}+b x+c \equiv 0 \quad \bmod m .
$$

Assuming that m is odd or that b is even we can always complete the square (the usual way) and so we are reduced to solving an equation of the form

$$
x^{2} \equiv a \quad \bmod m
$$

In fact, we are usually only interested in solving the equation modulo a prime, in which we are only missing the prime 2.
Definition 13.1. We say $a \in \mathbb{Z}_{m}$ is a quadratic residue of p if a is a square modulo m, that is, the equation

$$
x^{2} \equiv a \quad \bmod m
$$

has a solution.
Theorem 13.2 (Euler's Criterion). Let p be an odd prime.
The congruence

$$
x^{2} \equiv a \quad \bmod p
$$

has a solution, that is, a is a quadratic residue of p if and only if either p divides a or $a^{(p-1) / 2} \equiv 1$. If a is not a quadratic residue then $a^{(p-1) / 2} \equiv-1$.

Proof. If $p \mid a$ then $a \equiv 0$ and $0^{2}=0 \equiv a \bmod p$, so that 0 is a quadratic residue of p.

Now suppose that a is coprime to p. By assumption there is an integer k such that $p=2 k+1$. In this case

$$
\frac{(p-1)}{2}=k
$$

If we put

$$
b=a^{k}
$$

then

$$
\begin{aligned}
b^{2} & =\left(a^{k}\right)^{2} \\
& =a^{2 k} \\
& =a^{p-1} \\
& \equiv 1 \quad \bmod p
\end{aligned}
$$

by Fermat. Thus b is a solution of the equation

$$
x^{2} \equiv 1 \quad \bmod p
$$

so that b is a root of the polynomial $x^{2}-1$. As \mathbb{Z}_{p} is a field, this polynomial has at most two roots. Now ± 1 are two roots of this equation. It follows that

$$
b \equiv \pm 1 \quad \bmod p
$$

Suppose that a is a quadratic residue. Then $c^{2} \equiv a \bmod p$ for some integer c so that

$$
\begin{aligned}
b & =a^{k} \\
& \equiv\left(c^{2}\right)^{k} \quad \bmod p \\
& =c^{p-1} \\
& \equiv 1 \quad \bmod p
\end{aligned}
$$

by Fermat. Thus a is a quadratic residue if and only if a is a root of the polynomial

$$
x^{k}-1
$$

This polynomial has at most k roots.
But if a is coprime to p then the polynomial

$$
x^{2}-a \equiv 0 \quad \bmod p,
$$

either has two solutions or no solutions. Thus precisely k residues classes are quadratic residues and so all of the roots of the polynomial $x^{k}-1$ are quadratic residues.

In fact it is possible to write down, in some sense, the quadratic residues. Note that

$$
S=\{a \in \mathbb{Z} \mid-k \leq a \leq k\}
$$

is a compete residue system modulo p. It follows that ± 1 are the roots of $x^{2}-1^{2}, \pm 2$ are the roots of $x^{2}-2^{2}, \pm 3$ are the roots of $x^{2}-3^{2}$ and so on.

It turns out to be very convenient to define a symbol which keeps track of when a is a quadratic residue modulo a prime p.

Definition 13.3. Let p be a prime and let a be an integer.
We define the Legendre symbol by the rule:

$$
\binom{a}{p}= \begin{cases}0 & \text { if } p \text { divides } a . \\ 1 & \text { if }(a, p)=1 \text { and } a \text { is a quadratic residue of } p . \\ -1 & \text { if }(a, p)=1 \text { and } a \text { is not a quadratic residue of } p\end{cases}
$$

Corollary 13.4. If p is an odd prime and $a \in \mathbb{Z}$ then

$$
\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2} \quad \bmod p
$$

Proof. Immediate from (13.2) and the definition of the Legendre symbol.

Here are some of the key properties of the Legendre symbol:
Theorem 13.5. Let p be an odd prime and let a and b be two integers.
(1) If $a \equiv b \bmod p$ then

$$
\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right) .
$$

(2) If p does not divide a then

$$
\left(\frac{a^{2}}{p}\right)=1
$$

$$
\begin{equation*}
\left(\frac{-1}{p}\right)=(-1)^{(p-1) / 2} \tag{3}
\end{equation*}
$$

Thus -1 is a quadratic residue if and only if $p \equiv 1 \bmod 4$.
(4)

$$
\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)
$$

Proof. If $a \equiv b \bmod p$ then $x^{2}-a$ and $x^{2}-b$ have the same roots modulo p. Thus (1) is clear. a^{2} is obviously a quadratic residue. Thus (2) is also clear.
(13.2) implies that

$$
\left(\frac{-1}{p}\right)=(-1)^{(p-1) / 2}
$$

If $p=4 k+1$ then

$$
\frac{(p-1)}{2}=2 k
$$

is even so that

$$
\begin{aligned}
(-1)^{(p-1) / 2} & =(-1)^{2 k} \\
& =1
\end{aligned}
$$

Thus -1 is a quadratic residue of p if $p=4 k+1$. On the other hand, if $p=4 k+3$ then

$$
\frac{(p-1)}{2}=2 k+1
$$

is odd so that

$$
\begin{aligned}
(-1)^{(p-1) / 2} & =(-1)^{2 k+1} \\
& =-1
\end{aligned}
$$

Thus -1 is not a quadratic residue of p if $p=4 k+3$. This gives (3).
If either a or b is a multiple of p then $a b$ is also a multiple of p. Vice-versa, if $a b$ is a multiple of p then one of a and b is a multiple of p. In this case

$$
\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)
$$

holds, as zero equals zero.
Thus we may assume that a, b and $a b$ are all coprime to p. In this case

$$
\left(\frac{a}{p}\right) \equiv a^{(p-1) / 2} \quad \bmod p \quad \text { and } \quad\left(\frac{b}{p}\right) \equiv b^{(p-1) / 2} \quad \bmod p
$$

Then

$$
\begin{aligned}
\left(\frac{a b}{p}\right) & \equiv(a b)^{(p-1) / 2} \quad \bmod p \\
& =a^{(p-1) / 2} b^{(p-1) / 2} \\
& \equiv\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) \quad \bmod p
\end{aligned}
$$

This is (4).
It seems worth pointing out that one case of (4) of 13.5 is straightforward. If a and b are quadratic residues then we may find α and β such that

$$
\alpha^{2} \equiv a \quad \bmod p \quad \text { and } \quad \beta^{2} \equiv b \quad \bmod p
$$

In this case

$$
\begin{aligned}
(\alpha \beta)^{2} & =\alpha^{2} \beta^{2} \\
& \equiv a b \quad \bmod p .
\end{aligned}
$$

Thus if a and b are quadratic residues then so is $a b$. In this case

$$
\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right),
$$

holds as both sides are 1.
Example 13.6. Is -42 a quadratic residue modulo 37?
We want to compute

$$
\left(\frac{-42}{37}\right) .
$$

We have

$$
\begin{aligned}
\left(\frac{-42}{37}\right) & =\left(\frac{-1}{37}\right)\left(\frac{2}{37}\right)\left(\frac{3}{37}\right) \\
& =(-1)^{18}\left(\frac{2}{37}\right)\left(\frac{3}{37}\right) \\
& =\left(\frac{2}{37}\right)\left(\frac{3}{37}\right)
\end{aligned}
$$

We can also use

$$
\begin{aligned}
\left(\frac{-42}{37}\right) & =\left(\frac{-5}{37}\right) \\
& =\left(\frac{-1}{37}\right)\left(\frac{5}{37}\right) \\
& =\left(\frac{5}{37}\right) .
\end{aligned}
$$

