13. Quadratic Residues

We now turn to the question of when a quadratic equation has a solution modulo m. The general quadratic equation looks like

$$ax^2 + bx + c \equiv 0 \mod m.$$

Assuming that m is odd or that b is even we can always complete the square (the usual way) and so we are reduced to solving an equation of the form

$$x^2 \equiv a \mod m.$$

In fact, we are usually only interested in solving the equation modulo a prime, in which we are only missing the prime 2.

Definition 13.1. We say $a \in \mathbb{Z}_m$ is a quadratic residue of p if a is a square modulo m, that is, the equation

$$x^2 \equiv a \mod m$$

has a solution.

Theorem 13.2 (Euler's Criterion). Let p be an odd prime.

The congruence

$$x^2 \equiv a \mod p$$

has a solution, that is, a is a quadratic residue of p if and only if either p divides a or $a^{(p-1)/2} \equiv 1$. If a is not a quadratic residue then $a^{(p-1)/2} \equiv -1$.

Proof. If p|a then $a \equiv 0$ and $0^2 = 0 \equiv a \mod p$, so that 0 is a quadratic residue of p.

Now suppose that a is coprime to p. By assumption there is an integer k such that p = 2k + 1. In this case

$$\frac{(p-1)}{2} = k$$

If we put

 $b = a^k$

then

$$b^{2} = (a^{k})^{2}$$
$$= a^{2k}$$
$$= a^{p-1}$$
$$\equiv 1 \mod p,$$

by Fermat. Thus b is a solution of the equation

$$x^2 \equiv 1 \mod p,$$

so that b is a root of the polynomial $x^2 - 1$. As \mathbb{Z}_p is a field, this polynomial has at most two roots. Now ± 1 are two roots of this equation. It follows that

$$b \equiv \pm 1 \mod p.$$

Suppose that a is a quadratic residue. Then $c^2 \equiv a \mod p$ for some integer c so that

$$b = a^{k}$$
$$\equiv (c^{2})^{k} \mod p$$
$$= c^{p-1}$$
$$\equiv 1 \mod p,$$

by Fermat. Thus a is a quadratic residue if and only if a is a root of the polynomial

$$x^{k} - 1.$$

This polynomial has at most k roots.

But if a is coprime to p then the polynomial

$$x^2 - a \equiv 0 \mod p,$$

either has two solutions or no solutions. Thus precisely k residues classes are quadratic residues and so all of the roots of the polynomial $x^k - 1$ are quadratic residues.

In fact it is possible to write down, in some sense, the quadratic residues. Note that

$$S = \{ a \in \mathbb{Z} \mid -k \le a \le k \}$$

is a compete residue system modulo p. It follows that ± 1 are the roots of $x^2 - 1^2$, ± 2 are the roots of $x^2 - 2^2$, ± 3 are the roots of $x^2 - 3^2$ and so on.

It turns out to be very convenient to define a symbol which keeps track of when a is a quadratic residue modulo a prime p.

Definition 13.3. Let p be a prime and let a be an integer. We define the **Legendre symbol** by the rule:

$$\begin{pmatrix} \frac{a}{p} \end{pmatrix} = \begin{cases} 0 & \text{if } p \text{ divides } a. \\ 1 & \text{if } (a, p) = 1 \text{ and } a \text{ is } a \text{ quadratic residue of } p. \\ -1 & \text{if } (a, p) = 1 \text{ and } a \text{ is not } a \text{ quadratic residue of } p. \end{cases}$$

Corollary 13.4. If p is an odd prime and $a \in \mathbb{Z}$ then

$$\left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \mod p.$$

Proof. Immediate from (13.2) and the definition of the Legendre symbol. \Box

Here are some of the key properties of the Legendre symbol:

Theorem 13.5. Let p be an odd prime and let a and b be two integers. (1) If $a \equiv b \mod p$ then

$$\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right).$$

(2) If p does not divide a then

$$\left(\frac{a^2}{p}\right) = 1.$$

(3)

$$\left(\frac{-1}{p}\right) = (-1)^{(p-1)/2}.$$

Thus -1 is a quadratic residue if and only if $p \equiv 1 \mod 4$. (4)

$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right).$$

Proof. If $a \equiv b \mod p$ then $x^2 - a$ and $x^2 - b$ have the same roots modulo p. Thus (1) is clear. a^2 is obviously a quadratic residue. Thus (2) is also clear.

(13.2) implies that

$$\left(\frac{-1}{p}\right) = (-1)^{(p-1)/2}.$$

If p = 4k + 1 then

$$\frac{(p-1)}{2} = 2k,$$

is even so that

$$(-1)^{(p-1)/2} = (-1)^{2k}$$

= 1.

Thus -1 is a quadratic residue of p if p = 4k + 1. On the other hand, if p = 4k + 3 then

$$\frac{(p-1)}{2} = 2k + 1,$$

is odd so that

$$(-1)^{(p-1)/2} = (-1)^{2k+1}$$

= -1.

Thus -1 is not a quadratic residue of p if p = 4k + 3. This gives (3).

If either a or b is a multiple of p then ab is also a multiple of p. Vice-versa, if ab is a multiple of p then one of a and b is a multiple of p. In this case

$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$$

holds, as zero equals zero.

Thus we may assume that a, b and ab are all coprime to p. In this case

$$\left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \mod p$$
 and $\left(\frac{b}{p}\right) \equiv b^{(p-1)/2} \mod p$.

Then

$$\begin{pmatrix} \frac{ab}{p} \end{pmatrix} \equiv (ab)^{(p-1)/2} \mod p = a^{(p-1)/2} b^{(p-1)/2} \equiv \left(\frac{a}{p}\right) \left(\frac{b}{p}\right) \mod p.$$

This is (4).

It seems worth pointing out that one case of (4) of (13.5) is straightforward. If a and b are quadratic residues then we may find α and β such that

$$\alpha^2 \equiv a \mod p$$
 and $\beta^2 \equiv b \mod p$.

In this case

$$(\alpha\beta)^2 = \alpha^2\beta^2$$

$$\equiv ab \mod p.$$

Thus if a and b are quadratic residues then so is ab. In this case

$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right),$$

holds as both sides are 1.

Example 13.6. Is -42 a quadratic residue modulo 37?

We want to compute

$$\left(\frac{-42}{37}\right)_{4}$$

We have

$$\begin{pmatrix} -42\\ \overline{37} \end{pmatrix} = \begin{pmatrix} -1\\ \overline{37} \end{pmatrix} \begin{pmatrix} 2\\ \overline{37} \end{pmatrix} \begin{pmatrix} 3\\ \overline{37} \end{pmatrix}$$
$$= (-1)^{18} \begin{pmatrix} 2\\ \overline{37} \end{pmatrix} \begin{pmatrix} 3\\ \overline{37} \end{pmatrix}$$
$$= \begin{pmatrix} 2\\ \overline{37} \end{pmatrix} \begin{pmatrix} 3\\ \overline{37} \end{pmatrix}$$

We can also use

$$\left(\frac{-42}{37}\right) = \left(\frac{-5}{37}\right)$$
$$= \left(\frac{-1}{37}\right) \left(\frac{5}{37}\right)$$
$$= \left(\frac{5}{37}\right).$$