13. Quadratic Residues

We now turn to the question of when a quadratic equation has a solution modulo m. The general quadratic equation looks like

$$ax^2 + bx + c \equiv 0 \mod m.$$

Assuming that m is odd or that b is even we can always complete the square (the usual way) and so we are reduced to solving an equation of the form

$$x^2 \equiv a \mod m.$$

In fact, we are usually only interested in solving the equation modulo a prime, in which we are only missing the prime 2.

Definition 13.1. We say $a \in \mathbb{Z}_m$ is a **quadratic residue** of p if a is a square modulo m, that is, the equation

$$x^2 \equiv a \mod m$$

has a solution.

Theorem 13.2 (Euler’s Criterion). Let p be an odd prime.

The congruence

$$x^2 \equiv a \mod p$$

has a solution, that is, a is a quadratic residue of p if and only if either p divides a or $a^{(p-1)/2} \equiv 1$. If a is not a quadratic residue then $a^{(p-1)/2} \equiv -1$.

Proof. If $p|a$ then $a \equiv 0$ and $0^2 = 0 \equiv a \mod p$, so that 0 is a quadratic residue of p.

Now suppose that a is coprime to p. By assumption there is an integer k such that $p = 2k + 1$. In this case

$$\frac{(p - 1)}{2} = k.$$

If we put

$$b = a^k$$

then

$$b^2 = (a^k)^2 = a^{2k} = a^{p-1} \equiv 1 \mod p,$$

by Fermat. Thus b is a solution of the equation

$$x^2 \equiv 1 \mod p,$$
so that b is a root of the polynomial $x^2 - 1$. As \mathbb{Z}_p is a field, this polynomial has at most two roots. Now ± 1 are two roots of this equation. It follows that

$$b \equiv \pm 1 \mod p.$$ Suppose that a is a quadratic residue. Then $c^2 \equiv a \mod p$ for some integer c so that

$$b = a^k \equiv (c^2)^k \mod p = c^{p-1} \equiv 1 \mod p,$$ by Fermat. Thus a is a quadratic residue if and only if a is a root of the polynomial

$$x^k - 1.$$ This polynomial has at most k roots.

But if a is coprime to p then the polynomial

$$x^2 - a \equiv 0 \mod p,$$ either has two solutions or no solutions. Thus precisely k residues classes are quadratic residues and so all of the roots of the polynomial $x^k - 1$ are quadratic residues.

In fact it is possible to write down, in some sense, the quadratic residues. Note that

$$S = \{ a \in \mathbb{Z} \mid -k \leq a \leq k \}$$ is a compete residue system modulo p. It follows that ± 1 are the roots of $x^2 - 1^2$, ± 2 are the roots of $x^2 - 2^2$, ± 3 are the roots of $x^2 - 3^2$ and so on.

It turns out to be very convenient to define a symbol which keeps track of when a is a quadratic residue modulo a prime p.

Definition 13.3. Let p be a prime and let a be an integer.

We define the *Legendre symbol* by the rule:

$$\left(\frac{a}{p} \right) = \begin{cases} 0 & \text{if } p \text{ divides } a. \\ 1 & \text{if } (a, p) = 1 \text{ and } a \text{ is a quadratic residue of } p. \\ -1 & \text{if } (a, p) = 1 \text{ and } a \text{ is not a quadratic residue of } p. \end{cases}$$

Corollary 13.4. If p is an odd prime and $a \in \mathbb{Z}$ then

$$\left(\frac{a}{p} \right) \equiv a^{(p-1)/2} \mod p.$$
Proof. Immediate from (13.2) and the definition of the Legendre symbol.

Here are some of the key properties of the Legendre symbol:

Theorem 13.5. Let p be an odd prime and let a and b be two integers.

1. If $a \equiv b \mod p$ then

 \[
 \left(\frac{a}{p} \right) = \left(\frac{b}{p} \right).
 \]

2. If p does not divide a then

 \[
 \left(\frac{a^2}{p} \right) = 1.
 \]

3. \[
 \left(\frac{-1}{p} \right) = (-1)^{(p-1)/2}.
 \]
 Thus -1 is a quadratic residue if and only if $p \equiv 1 \mod 4$.

4. \[
 \left(\frac{ab}{p} \right) = \left(\frac{a}{p} \right) \left(\frac{b}{p} \right).
 \]

Proof. If $a \equiv b \mod p$ then $x^2 - a$ and $x^2 - b$ have the same roots modulo p. Thus (1) is clear. a^2 is obviously a quadratic residue. Thus (2) is also clear.

(13.2) implies that

\[
\left(\frac{-1}{p} \right) = (-1)^{(p-1)/2}.
\]

If $p = 4k + 1$ then

\[
\frac{p - 1}{2} = 2k,
\]

is even so that

\[
(-1)^{(p-1)/2} = (-1)^{2k} = 1.
\]

Thus -1 is a quadratic residue of p if $p = 4k + 1$. On the other hand, if $p = 4k + 3$ then

\[
\frac{p - 1}{2} = 2k + 1,
\]

is odd so that

\[
(-1)^{(p-1)/2} = (-1)^{2k+1} = -1.
\]
Thus \(-1\) is not a quadratic residue of \(p\) if \(p = 4k + 3\). This gives (3).

If either \(a\) or \(b\) is a multiple of \(p\) then \(ab\) is also a multiple of \(p\). Vice-versa, if \(ab\) is a multiple of \(p\) then one of \(a\) and \(b\) is a multiple of \(p\). In this case

\[\left(\frac{ab}{p} \right) = \left(\frac{a}{p} \right) \left(\frac{b}{p} \right) \]

holds, as zero equals zero.

Thus we may assume that \(a\), \(b\) and \(ab\) are all coprime to \(p\). In this case

\[\left(\frac{a}{p} \right) \equiv a^{(p-1)/2} \mod p \quad \text{and} \quad \left(\frac{b}{p} \right) \equiv b^{(p-1)/2} \mod p. \]

Then

\[\left(\frac{ab}{p} \right) \equiv (ab)^{(p-1)/2} \mod p \]

\[= a^{(p-1)/2}b^{(p-1)/2} \]

\[\equiv \left(\frac{a}{p} \right) \left(\frac{b}{p} \right) \mod p. \]

This is (4).

\[\square \]

It seems worth pointing out that one case of (4) of (13.5) is straightforward. If \(a\) and \(b\) are quadratic residues then we may find \(\alpha\) and \(\beta\) such that

\[\alpha^2 \equiv a \mod p \quad \text{and} \quad \beta^2 \equiv b \mod p. \]

In this case

\[(\alpha\beta)^2 = \alpha^2\beta^2 \]

\[\equiv ab \mod p. \]

Thus if \(a\) and \(b\) are quadratic residues then so is \(ab\). In this case

\[\left(\frac{ab}{p} \right) = \left(\frac{a}{p} \right) \left(\frac{b}{p} \right), \]

holds as both sides are 1.

It is interesting to see how to relate the problem of being a quadratic residue modulo \(m\) to being a quadratic residue modulo a prime.

Theorem 13.6. Let \(m\) be a natural number bigger than one and let \(a\) be coprime to \(m\).

Then \(a\) is a quadratic residue of \(m\) if and only if \(a\) is a quadratic residue of every odd prime dividing \(m\) and if \(m = 2^2m'\) where \(m'\) is
odd then \(a \) is congruent to one modulo 4 and if 8 divides \(m \) then \(a \) is congruent to one modulo 8.

Proof. Let \(m = 2^e p_1^{e_1} p_2^{e_2} \ldots p_r^{e_r} \) be the prime factorisation of \(m \). We want to solve the equation

\[
x^2 \equiv a \pmod{m}.
\]

By the Chinese remainder theorem it is enough to solve the equation for every prime dividing \(m \). \(\square \)