
14. Composite

It is interesting to see how to relate the problem of being a quadratic
residue modulo m to being a quadratic residue modulo a prime.

Theorem 14.1. Let m be a natural number bigger than one and let a
be coprime to m.

Then a is a quadratic residue of m if and only if a is a quadratic
residue of every odd prime dividing m and either m is not divisible by
4, or m is divisible by 4 but not 8 and a is congruent to one modulo 4,
or m is divisible by 8 and a is congruent to one modulo 8.

Proof. Let m = 2epe11 pe22 . . . perr be the prime factorisation of m. We
want to solve the equation

x2 ≡ a mod m.

By the Chinese remainder theorem it is enough to solve the equation
for every prime p dividing m.

First suppose that p is an odd prime. Certainly if a is quadratic
residue modulo pe then it is a quadratic residue modulo p. For the
reverse direction consider the polynomial f(x) = x2− a. If x0 is a root
then x0 6= 0 mod p. f ′(x) = 2x so that f ′(x0) = 2x0 6= 0 mod p.
Thus x0 is non-singular and general theory says we can lift x0 uniquely
to a solution modulo pe, for any e.

Now suppose that p = 2. Note that 1 is a quadratic residue modulo
2 and so there is no condition if e = 1. If e = 2 then note that 1 is the
only non-zero quadratic residues modulo 4, so that a ≡ 1 mod 4. If
e ≥ 3 then it is proved in Chapter 4 that the only quadratic residues
are congruent to one modulo 8. �

In fact one can push this analysis a bit further and find the number
of solutions to the equation x2 ≡ a mod m.

Theorem 14.2. Suppose that m > 1 and that a ∈ Um is a unit.
If the equation x2 ≡ a mod m has a solution then it has 2r+u solu-

tions, where r is then number of odd distinct prime factors of m and

u =


0 if 4 does not divide m

1 if 4 divides m but not 8

2 if 8 divides m.

Proof. We apply the Chinese remainder theorem. Suppose p is an odd
prime dividing m. By assumption the polynomial x2 − a has a root
modulo p. If b is a root then so is −b 6= b mod p. As Zp is a field the
polynomial x2 − a has at most two roots. Therefore it has exactly two
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roots. As both roots are non-singular, as in the proof of (14.1) we can
lift both solutions to unique solutions modulo pe.

Now suppose that p = 2 divides m. If 4 does not divide m then
a ≡ 1 mod 2 and x2 ≡ a mod 2 has one solution, x0 = 1. If 4 divides
m but not 8 then a ≡ 1 mod 4 and there are 2 = 21 solutions, 1 and
3, to the equation x2 ≡ 1 mod 4. If 8 divides m then it is proved in
Chapter 4 that there are 4 = 22 solutions. �
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