14. Composite

It is interesting to see how to relate the problem of being a quadratic residue modulo \(m \) to being a quadratic residue modulo a prime.

Theorem 14.1. Let \(m \) be a natural number bigger than one and let \(a \) be coprime to \(m \).

Then \(a \) is a quadratic residue of \(m \) if and only if \(a \) is a quadratic residue of every odd prime dividing \(m \) and either \(m \) is not divisible by 4, it is divisible by 4 but not 8 and \(a \) is congruent to one modulo 4, or it is divisible by 8 and \(a \) is congruent to one modulo 8.

Proof. Let \(m = 2^e p_1^{e_1} p_2^{e_2} \ldots p_r^{e_r} \) be the prime factorisation of \(m \). We want to solve the equation

\[
x^2 \equiv a \pmod{m}.
\]

By the Chinese remainder theorem it is enough to solve the equation for every prime \(p \) dividing \(m \).

First suppose that \(p \) is an odd prime. Certainly if \(a \) is quadratic residue modulo \(p^e \) then it is a quadratic residue modulo \(p \). For the reverse direction consider the polynomial \(f(x) = x^2 - a \). If \(x_0 \) is a root then \(x_0 \not\equiv 0 \pmod{p} \). \(f'(x) = 2x \) so that \(f'(x_0) = 2x_0 \not\equiv 0 \pmod{p} \). Thus \(x_0 \) is non-singular and general theory says we can lift \(x_0 \) uniquely to a solution modulo \(p^e \), for any \(e \).

Now suppose that \(p = 2 \). Note that 1 is a quadratic residue modulo 2 and so there is no condition if \(e = 1 \). If \(e = 2 \) then note that 1 is the only non-zero quadratic residues modulo 4, so that \(a \equiv 1 \pmod{4} \). If \(e \geq 3 \) then it is proved in Chapter 4 that the only quadratic residues are congruent to one modulo 8. \(\square \)

In fact one can push this analysis a bit further and find the number of solutions to the equation \(x^2 \equiv a \pmod{m} \).

Theorem 14.2. Suppose that \(m > 1 \) and that \(a \in U_m \) is a unit.

If the equation \(x^2 \equiv a \pmod{m} \) has a solution then it has \(2^{r+u} \) solutions, where \(r \) is then number of odd distinct prime factors and

\[
u = \begin{cases}
0 & \text{if 4 does not divide } m \\
1 & \text{if 4 divides } m \text{ but not 8} \\
2 & \text{if 8 divides } m.
\end{cases}
\]

Proof. We apply the Chinese remainder theorem. Suppose \(p \) is an odd prime dividing \(m \). By assumption the polynomial \(x^2 - a \) has a root modulo \(p \). If \(b \) is a root then so is \(-b \equiv b \pmod{p} \). As \(\mathbb{Z}_p \) is a field the polynomial \(x^2 - a \) has at most two roots. Therefore it has exactly two
roots. As both roots are non-singular, as in the proof of (14.1) we can lift both solutions to unique solutions modulo p^e.

Now suppose that $p = 2$ divides m. If 4 does not divide m then $a \equiv 1 \mod 2$ and $x^2 \equiv a \mod 2$ has one solution, $x_0 = 1$. If 4 divides m but not 8 then $a \equiv 1 \mod 4$ and there are $2 = 2^1$ solutions, 1 and 3, to the equation $x^2 \equiv 1 \mod 4$. If 8 divides m then it is proved in Chapter 4 that there are $4 = 2^2$ solutions. □