16. Quadratic Reciprocity

We now recall one of the most famous results in all of mathematics:
Theorem 16.1 (Quadratic reciprocity). Let p and q be two different odd primes.

Then

$$
\left(\frac{p}{q}\right)=\left(\frac{q}{p}\right),
$$

unless $p \equiv 3 \bmod 4$ and $q \equiv 3 \bmod 4$, in which case

$$
\left(\frac{p}{q}\right)=-\left(\frac{q}{p}\right)
$$

Succintly

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{(p-1) / 2 \cdot(q-1) / 2}
$$

Proof. By Gauss's Lemma,

$$
\left(\frac{q}{p}\right)=(-1)^{\mu} \quad \text { and } \quad\left(\frac{p}{q}\right)=(-1)^{\nu}
$$

where μ is the number of elements of the sequence

$$
q \quad 2 q \quad 3 q \quad \ldots \quad(p-2) q / 2 \quad \text { and } \quad(p-1) q / 2
$$

which are equivalent to an element of the interval $[-(p-1) / 2,0)$ and ν is the number of elements of the sequence

$$
p \quad 2 p \quad 3 p \quad \ldots \quad(q-2) p / 2 \quad \text { and } \quad(q-1) p / 2
$$

which are equivalent to an element of the interval $[-(q-1) / 2,0)$.
Therefore we have to show that

$$
\mu+\nu \equiv \frac{p-1}{2} \cdot \frac{q-1}{2} \quad \bmod 2 .
$$

Consider a multiple $x q$ with $1 \leq x \leq(p-1) / 2$. If we pick y such that

$$
-\frac{p}{2}<q x-p y<\frac{p}{2}
$$

then $q x-p y$ is the unique element of

$$
\{a \in \mathbb{Z} \mid-p / 2<a<p / 2\}
$$

equivalent to $q x$ modulo p. If we flip the sign of the inequality above we get

$$
-\frac{p}{2}<p y-q x<\frac{p}{2},
$$

so that

$$
-\frac{1}{2}<y-\frac{q}{p} x<\frac{1}{2}
$$

so that

$$
\frac{q}{p} x-\frac{1}{2}<y<\frac{q}{p} x+\frac{1}{2} .
$$

It follows that $y \geq-1 / 2$, so that $y \geq 0$. Suppose that $y=0$. Then

$$
q x-p y=q x>0
$$

and we don't get a number with negative residue. Thus we may assume that $y>0$. On the other hand, for $x \leq(p-1) / 2$, we have

$$
\begin{aligned}
\frac{q}{p} x+\frac{1}{2} & \leq \frac{q}{2}-\frac{q}{2 p}+\frac{1}{2} \\
& <\frac{q+1}{2}
\end{aligned}
$$

Thus we may assume that $y \in(0,(q-1) / 2]$. It follows that μ is the number of elements in the set

$$
R=\left\{(x, y) \in \mathbb{Z}^{2} \mid x \in(0,(p-1) / 2], y \in(0,(q-1) / 2]\right\}
$$

such that

$$
0>q x-p y>-\frac{p}{2}
$$

Similarly ν is the number of elements in the set

$$
R=\left\{(x, y) \in \mathbb{Z}^{2} \mid x \in(0,(p-1) / 2], y \in(0,(q-1) / 2]\right\}
$$

such that

$$
0>p y-q x>-\frac{q}{2}
$$

Note that the points of the set R have to lie in one of four regions, the two regions describe above or

$$
p y-q x>\frac{p}{2} \quad \text { or } \quad p y-q x<-\frac{q}{2} .
$$

If λ is the number of points in the third region and ρ is the number of points in the fourth region, we have

$$
\lambda+\mu+\nu+\rho=\frac{p-1}{2} \cdot \frac{q-1}{2}
$$

since there are $(p-1) / 2$ choices for x and $(q-1) / 2$ choices for y.
Consider the numbers

$$
x^{\prime}=\frac{p+1}{2}-x \quad \text { and } \quad y^{\prime}=\frac{q+1}{2}-y .
$$

As x runs from 1 to $(p-1) / 2, x^{\prime}$ runs down through the same numbers and similarly for y.

Suppose that we have a point of the third region, so that

$$
0>p y-x y>\frac{p}{2}
$$

Then

$$
\begin{aligned}
p y^{\prime}-q x^{\prime} & =p\left(\frac{q+1}{2}-y\right)-q\left(\frac{p+1}{2}-x\right) \\
& =\frac{p-q}{2}-(p y-q x) \\
& <\frac{p-q}{2}-\frac{p}{2} \\
& <-\frac{q}{2} .
\end{aligned}
$$

Thus $\left(x^{\prime}, y^{\prime}\right)$ is a point of the fourth region. Vice-versa, if we start with a point $\left(x^{\prime}, y^{\prime}\right)$ of the fourth region then we get a point (x, y) of the third region using the inverse transformation.

It follows that the third region has the same number of integer points as the fourth region, that is, $\lambda=\rho$. In this case

$$
\begin{aligned}
\frac{p-1}{2} \cdot \frac{q-1}{2} & =\lambda+\mu+\nu+\rho \\
& =2 \lambda+\mu+\nu \\
& =\mu+\nu \quad \bmod 2 .
\end{aligned}
$$

The following picture shows the four different regions

Question 16.2. Is 257 a quadratic residue modulo 269?

Note that 257 and 269 are both prime numbers. 257 is congruent to one modulo 4 . Therefore if we apply quadratic reciprocity we have

$$
\begin{aligned}
\left(\frac{257}{269}\right) & =\left(\frac{269}{257}\right) \\
& =\left(\frac{12}{257}\right) \\
& =\left(\frac{4}{257}\right)\left(\frac{3}{257}\right) \\
& =\left(\frac{257}{3}\right) \\
& =\left(\frac{2}{3}\right) \\
& =-1 .
\end{aligned}
$$

Thus 257 is not a quadratic residue modulo 269 .
If we fix q then we can use the law of quadratic reciprocity to decide for which primes p that q is a square modulo p.

Theorem 16.3. Fix an odd prime q.
If p is an odd prime then p has a unique representation of the form

$$
p=4 k q \pm a \quad 0<a<4 q \quad \text { and } \quad a \equiv 1 \quad \bmod 4
$$

for some $k \in \mathbb{Z}$. With this choice of a

$$
\left(\frac{q}{p}\right)=\left(\frac{a}{q}\right) .
$$

Proof. By the division algorithm we may write

$$
p=4 q l+r,
$$

where $0 \leq r<4 q$ and $l \in \mathbb{Z} . r$ is odd as p is odd and $4 q k$ is even. If $r \equiv 1 \bmod 4$ then we take $a=r($ and $k=l)$. Otherwise $r \equiv 3$ $\bmod 4$. In this case

$$
p=4 q(l+1)+(r-4 q) .
$$

Let $a=4 q-r$ and $k=l+1$. Then $0 \leq a<4 q$ and

$$
p=4 q k-a .
$$

It is not hard to see this representation is unique.
It remains to check that

$$
\left(\frac{p}{q}\right)=\left(\frac{a}{q}\right) .
$$

There are two cases. If

$$
p=4 q k+a
$$

then $p \equiv 1 \bmod 4$ so that by quadratic reciprocity

$$
\begin{aligned}
\left(\frac{q}{p}\right) & =\left(\frac{p}{q}\right) \\
& =\left(\frac{a}{q}\right) .
\end{aligned}
$$

Now suppose that

$$
p=4 q k-a .
$$

Then $p \equiv-1 \equiv 3 \bmod 4$. There are two cases. If $q \equiv 1 \bmod 4$ then

$$
\left(\frac{-1}{q}\right)=1
$$

and so we can apply quadratic reciprocity to get

$$
\begin{aligned}
\left(\frac{q}{p}\right) & =\left(\frac{p}{q}\right) \\
& =\left(\frac{-a}{q}\right) \\
& =\left(\frac{-1}{q}\right)\left(\frac{a}{q}\right) \\
& =\left(\frac{a}{q}\right) .
\end{aligned}
$$

Finally, suppose that $q \equiv 3 \bmod 4$. Then

$$
\left(\frac{-1}{q}\right)=-1
$$

and so we can apply quadratic reciprocity to get

$$
\begin{aligned}
\left(\frac{q}{p}\right) & =-\left(\frac{p}{q}\right) \\
& =-\left(\frac{-a}{q}\right) \\
& =-\left(\frac{-1}{q}\right)\left(\frac{a}{q}\right) \\
& =\left(\frac{a}{q}\right) .
\end{aligned}
$$

Lemma 16.4. Let q be an odd prime. The integers a such that

$$
0<a<4 q, \quad a \equiv 1 \quad \bmod 4 \quad \text { and } \quad\left(\frac{a}{q}\right)=1
$$

are the remainders modulo $4 q$ of the sequence of odd squares

$$
1^{2} \quad 3^{2}, \quad 5^{2} \quad \ldots \quad \text { and } \quad(q-2)^{2} .
$$

Proof. The remainders of the squares certainly lie between 1 and $4 q-1$. If b is odd then $b^{2} \equiv 1 \bmod 4$, and certainly a square is a square modulo q.

Now suppose that a is an integer such that

$$
0<a<4 q, \quad a \equiv 1 \quad \bmod 4 \quad \text { and } \quad\left(\frac{a}{q}\right)=1 .
$$

Then the equation

$$
x^{2} \equiv a \quad \bmod q
$$

Has a solution b and we may assume that $1 \leq b \leq q-1$. Note that $q-b$ is also a solution and one of b and $q-b$ is odd. So possibly replacing b by $q-b$ we may assume that b is odd. Therefore

$$
b^{2} \equiv a \quad \bmod q \quad 1 \leq b \leq q-2 \quad \text { and } \quad b \equiv 1 \quad \bmod 2 .
$$

But then

$$
a \equiv 1 \equiv b^{2} \quad \bmod 4
$$

Thus

$$
a \equiv b^{2} \quad \bmod 4 q,
$$

by the Chinese remainder theorem.
We illustrate how to use these results in a couple of interesting cases. Suppose that $q=3$. Then we are supposed to look at the squares up to $q-2$, which is just $1^{2}=1$. So if p is an odd prime such that 3 is a square modulo p we must have

$$
p=12 k \pm 1 .
$$

for some k, that is,

$$
p \equiv \pm 1 \quad \bmod 12
$$

As p is odd, the only other possibilities are $12 k \pm 3$ and $12 k \pm 5$. But $12 k \pm 3$ is divisible by 3 and so we must have $p=12 k \pm 5$. Putting all of this together

$$
\left(\frac{3}{p}\right)=\left\{\begin{array}{lll}
1 & \text { if } p \equiv \pm 1 & \bmod 12 \\
-1 & \text { if } p \equiv \pm 5 & \bmod 12 \\
6 & &
\end{array}\right.
$$

Now suppose that we consider $q=23$. We consider the squares

$$
\begin{array}{lllllllllll}
1^{2} & 3^{2} & 5^{2} & 7^{2} & 9^{2} & 11^{2} & 13^{2} & 15^{2} & 17^{2} & 19^{2} & 21^{2} .
\end{array}
$$

Modulo $4 q=92$ we get

$$
\begin{array}{lllllllllll}
1 & 9 & 25 & 49 & 81 & 29 & 77 & 41 & 13 & 85 & 73 .
\end{array}
$$

So 23 is a square modulo an odd prime p if and only if $p \equiv \pm 1 \quad \pm 9 \quad \pm 13 \quad \pm 25 \quad \pm 29 \quad \pm 41 \quad \pm 49 \quad \pm 73 \quad \pm 77 \begin{array}{lllllll} & \pm 81 & \pm 85 & \bmod 92\end{array}$

