
16. Quadratic reciprocity

We now recall one of the most famous results in all of mathematics:

Theorem 16.1 (Quadratic reciprocity). Let p and q be two different
odd primes.

Then (
p

q

)
=

(
q

p

)
,

unless p ≡ 3 mod 4 and q ≡ 3 mod 4, in which case(
p

q

)
= −

(
q

p

)
,

Succintly (
p

q

)(
q

p

)
= (−1)(p−1)/2·(q−1)/2.

Proof. By Gauss’s Lemma,(
q

p

)
= (−1)µ and

(
p

q

)
= (−1)ν ,

where µ is the number of elements of the sequence

q 2q 3q . . . (p− 2)q/2 and (p− 1)q/2

which are equivalent to an element of the interval [−(p − 1)/2, 0) and
ν is the number of elements of the sequence

p 2p 3p . . . (q − 2)p/2 and (q − 1)p/2

which are equivalent to an element of the interval [−(q − 1)/2, 0).
Therefore we have to show that

µ+ ν ≡ p− 1

2
· q − 1

2
mod 2.

Consider a multiple xq with 1 ≤ x ≤ (p − 1)/2. If we pick y such
that

−p
2
< qx− py < p

2
then qx− py is the unique element of

{ a ∈ Z | − p/2 < a < p/2 }
equivalent to qx modulo p. If we flip the sign of the inequality above
we get

−p
2
< py − qx < p

2
,

so that

−1

2
< y − q

p
x <

1

2
,

1



so that
q

p
x− 1

2
< y <

q

p
x+

1

2
.

It follows that y ≥ −1/2, so that y ≥ 0. Suppose that y = 0. Then

qx− py = qx > 0,

and we don’t get a number with negative residue. Thus we may assume
that y > 0. On the other hand, for x ≤ (p− 1)/2, we have

q

p
x+

1

2
≤ q

2
− q

2p
+

1

2

<
q + 1

2
.

Thus we may assume that y ∈ (0, (q − 1)/2]. It follows that µ is the
number of elements in the set

R = { (x, y) ∈ Z2 |x ∈ (0, (p− 1)/2], y ∈ (0, (q − 1)/2] }
such that

0 > qx− py > −p
2
.

Similarly ν is the number of elements in the set

R = { (x, y) ∈ Z2 |x ∈ (0, (p− 1)/2], y ∈ (0, (q − 1)/2] }
such that

0 > py − qx > −q
2
.

Note that the points of the set R have to lie in one of four regions, the
two regions describe above or

py − qx > p

2
or py − qx < −q

2
.

If λ is the number of points in the third region and ρ is the number of
points in the fourth region, we have

λ+ µ+ ν + ρ =
p− 1

2
· q − 1

2
,

since there are (p− 1)/2 choices for x and (q − 1)/2 choices for y.
Consider the numbers

x′ =
p+ 1

2
− x and y′ =

q + 1

2
− y.

As x runs from 1 to (p−1)/2, x′ runs down through the same numbers
and similarly for y.

Suppose that we have a point of the third region, so that

0 > py − xy > p

2
.
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Then

py′ − qx′ = p

(
q + 1

2
− y
)
− q

(
p+ 1

2
− x
)

=
p− q

2
− (py − qx)

<
p− q

2
− p

2

< −q
2
.

Thus (x′, y′) is a point of the fourth region. Vice-versa, if we start with
a point (x′, y′) of the fourth region then we get a point (x, y) of the
third region using the inverse transformation.

It follows that the third region has the same number of integer points
as the fourth region, that is, λ = ρ. In this case

p− 1

2
· q − 1

2
= λ+ µ+ ν + ρ

= 2λ+ µ+ ν

= µ+ ν mod 2. �

The following picture shows the four different regions

Question 16.2. Is 257 a quadratic residue modulo 269?
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Note that 257 and 269 are both prime numbers. 257 is congruent to
one modulo 4. Therefore if we apply quadratic reciprocity we have(

257

269

)
=

(
269

257

)
=

(
12

257

)
=

(
4

257

)(
3

257

)
=

(
257

3

)
=

(
2

3

)
= −1.

Thus 257 is not a quadratic residue modulo 269.
If we fix q then we can use the law of quadratic reciprocity to decide

for which primes p that q is a square modulo p.

Theorem 16.3. Fix an odd prime q.
If p is an odd prime then p has a unique representation of the form

p = 4kq ± a 0 < a < 4q and a ≡ 1 mod 4,

for some k ∈ Z. With this choice of a(
q

p

)
=

(
a

q

)
.

Proof. By the division algorithm we may write

p = 4ql + r,

where 0 ≤ r < 4q and l ∈ Z. r is odd as p is odd and 4qk is even.
If r ≡ 1 mod 4 then we take a = r (and k = l). Otherwise r ≡ 3
mod 4. In this case

p = 4q(l + 1) + (r − 4q).

Let a = 4q − r and k = l + 1. Then 0 ≤ a < 4q and

p = 4qk − a.
It is not hard to see this representation is unique.

It remains to check that (
p

q

)
=

(
a

q

)
.
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There are two cases. If

p = 4qk + a,

then p ≡ 1 mod 4 so that by quadratic reciprocity(
q

p

)
=

(
p

q

)
=

(
a

q

)
.

Now suppose that

p = 4qk − a.
Then p ≡ −1 ≡ 3 mod 4. There are two cases. If q ≡ 1 mod 4 then(

−1

q

)
= 1

and so we can apply quadratic reciprocity to get(
q

p

)
=

(
p

q

)
=

(
−a
q

)
=

(
−1

q

)(
a

q

)
=

(
a

q

)
.

Finally, suppose that q ≡ 3 mod 4. Then(
−1

q

)
= −1

and so we can apply quadratic reciprocity to get(
q

p

)
= −

(
p

q

)
= −

(
−a
q

)
= −

(
−1

q

)(
a

q

)
=

(
a

q

)
. �
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Lemma 16.4. Let q be an odd prime. The integers a such that

0 < a < 4q, a ≡ 1 mod 4 and

(
a

q

)
= 1

are the remainders modulo 4q of the sequence of odd squares

12 32, 52 . . . and (q − 2)2.

Proof. The remainders of the squares certainly lie between 1 and 4q−1.
If b is odd then b2 ≡ 1 mod 4, and certainly a square is a square modulo
q.

Now suppose that a is an integer such that

0 < a < 4q, a ≡ 1 mod 4 and

(
a

q

)
= 1.

Then the equation

x2 ≡ a mod q

Has a solution b and we may assume that 1 ≤ b ≤ q−1. Note that q−b
is also a solution and one of b and q − b is odd. So possibly replacing
b by q − b we may assume that b is odd. Therefore

b2 ≡ a mod q 1 ≤ b ≤ q − 2 and b ≡ 1 mod 2.

But then

a ≡ 1 ≡ b2 mod 4.

Thus

a ≡ b2 mod 4q,

by the Chinese remainder theorem. �

We illustrate how to use these results in a couple of interesting cases.
Suppose that q = 3. Then we are supposed to look at the squares up
to q − 2, which is just 12 = 1. So if p is an odd prime such that 3 is a
square modulo p we must have

p = 12k ± 1.

for some k, that is,

p ≡ ±1 mod 12.

As p is odd, the only other possibilities are 12k ± 3 and 12k ± 5. But
12k ± 3 is divisible by 3 and so we must have p = 12k ± 5. Putting all
of this together (

3

p

)
=

{
1 if p ≡ ±1 mod 12

−1 if p ≡ ±5 mod 12.
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Now suppose that we consider q = 23. We consider the squares

12 32 52 72 92 112 132 152 172 192 212.

Modulo 4q = 92 we get

1 9 25 49 81 29 77 41 13 85 73.

So 23 is a square modulo an odd prime p if and only if

p ≡ ±1 ±9 ±13 ±25 ±29 ±41 ±49 ±73 ±77 ±81 ±85 mod 92.
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