3. UniQue factorisation

The main result of this section will be the:
Theorem 3.1 (Fundamental Theorem of Arithmetic). Every non-zero integer a is of the form

$$
\pm 1 \cdot p_{1} \cdot p_{2} \cdots \cdot p_{n}
$$

where $p_{1}, p_{2}, \ldots, p_{n}$ are prime numbers.
The key result is the following:
Proposition 3.2. If p is a prime number and $p \mid a b$ then either $p \mid a$ or $p \mid b$.

Proof. We may suppose that p does not divide a. As the only divisors of p are p and 1 , and p does not divide a, it follows that the greatest common divisor of p and a is 1 .

By (2.9) it follows that we may find integers λ and μ such that

$$
1=\lambda p+\mu a .
$$

Multiplying both sides by b we get

$$
\begin{aligned}
b & =b \cdot 1 \\
& =b(\lambda p+\mu a) \\
& =(b \lambda) p+\mu a b .
\end{aligned}
$$

Now the first term is visibly divisible by p and the second term is divisible by p by assumption. Thus p divides b.
Proof of (3.1). We first prove existence. If a is negative and

$$
|a|=p_{1} \cdot p_{2} \cdots \cdots p_{n}
$$

then

$$
a=-p_{1} \cdot p_{2} \cdots \cdot p_{n}
$$

Thus we may assume that a is positive. We proceed by induction on a. If $a=1$ there is nothing to prove. Assume the result for all natural numbers less than a. If a is prime there is nothing to prove. Otherwise we may write

$$
a=b c,
$$

where b and c are both greater than one and both less than a. By induction b and c are products of primes,

$$
b=q_{1} \cdot q_{2} \cdots \cdot q_{m} \quad \text { and } \quad c=r_{1} \cdot r_{2} \cdots \cdot r_{n} .
$$

In this case

$$
b c=q_{1} \cdot q_{2} \cdots \cdot \underset{1}{q_{m}} \cdot r_{1} \cdot r_{2} \cdots \cdot r_{n}
$$

is also a product of primes. This completes the proof of existence.
Now suppose that we can factor a into two different products of primes,

$$
\pm q_{1} \cdot q_{2} \cdots \cdot q_{m}= \pm r_{1} \cdot r_{2} \cdots \cdot r_{n}
$$

We have

$$
q_{1} \cdot q_{2} \cdots \cdot q_{m}=r_{1} \cdot r_{2} \cdots \cdot r_{n} .
$$

Consider the prime q_{1}. It divides the LHS and so it divides the RHS. But we have already shown that if a prime divides a product it must divide one of the factors. Thus q_{1} divides r_{j} for some j. As r_{j} is prime and q_{i} is not one it follows that $q_{1}=r_{i}$. It is then easy to see that $q_{1}=r_{1}$. Cancelling, we are done by induction on the number of prime factors.

It is worth pointing out that we can compute the greatest common divisor using uniqueness of factorisation. Suppose that we want to find the greatest common divisor of two natural numbers a and b. We can factor both a and b into into primes. Collecting together like primes and possibly allowing zero as an exponent, we may write

$$
a=p_{1}^{m_{1}} p_{2}^{m_{2}} \ldots p_{k}^{m_{k}} \quad \text { and } \quad b=p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots p_{k}^{n_{k}}
$$

Suppose that d is the greatest common divisor. We may aslo assume that d has the same form:

$$
d=p_{1}^{o_{1}} p_{2}^{o_{2}} \ldots p_{k}^{o_{k}}
$$

We can calculate the exponents o_{i} prime by prime. In fact

$$
o_{i}=\min \left(m_{i}, n_{i}\right) .
$$

In fact, as d divides a, we must have $o_{i} \leq m_{i}$. As d divides b we must have $o_{i} \leq n_{i}$.

