
3. Unique factorisation

The main result of this section will be the:

Theorem 3.1 (Fundamental Theorem of Arithmetic). Every non-zero
integer a is of the form

±1 · p1 · p2 · · · · · pn,
where p1, p2, . . . , pn are prime numbers.

The key result is the following:

Proposition 3.2. If p is a prime number and p|ab then either p|a or
p|b.

Proof. We may suppose that p does not divide a. As the only divisors
of p are p and 1, and p does not divide a, it follows that the greatest
common divisor of p and a is 1.

By (2.9) it follows that we may find integers λ and µ such that

1 = λp+ µa.

Multiplying both sides by b we get

b = b · 1
= b(λp+ µa)

= (bλ)p+ µab.

Now the first term is visibly divisible by p and the second term is
divisible by p by assumption. Thus p divides b. �

Proof of (3.1). We first prove existence. If a is negative and

|a| = p1 · p2 · · · · · pn,
then

a = −p1 · p2 · · · · · pn.
Thus we may assume that a is positive. We proceed by induction on
a. If a = 1 there is nothing to prove. Assume the result for all natural
numbers less than a. If a is prime there is nothing to prove. Otherwise
we may write

a = bc,

where b and c are both greater than one and both less than a. By
induction b and c are products of primes,

b = q1 · q2 · · · · · qm and c = r1 · r2 · · · · · rn.
In this case

bc = q1 · q2 · · · · · qm · r1 · r2 · · · · · rn,
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is also a product of primes. This completes the proof of existence.
Now suppose that we can factor a into two different products of

primes,
±q1 · q2 · · · · · qm = ±r1 · r2 · · · · · rn.

We have
q1 · q2 · · · · · qm = r1 · r2 · · · · · rn.

Consider the prime q1. It divides the LHS and so it divides the RHS.
But we have already shown that if a prime divides a product it must
divide one of the factors. Thus q1 divides rj for some j. As rj is prime
and qi is not one it follows that q1 = ri. It is then easy to see that
q1 = r1. Cancelling, we are done by induction on the number of prime
factors. �

It is worth pointing out that we can compute the greatest common
divisor using uniqueness of factorisation. Suppose that we want to find
the greatest common divisor of two natural numbers a and b. We can
factor both a and b into into primes. Collecting together like primes
and possibly allowing zero as an exponent, we may write

a = pm1
1 pm2

2 . . . pmk
k and b = pn1

1 p
n2
2 . . . pnk

k .

Suppose that d is the greatest common divisor. We may aslo assume
that d has the same form:

d = po11 p
o2
2 . . . pokk .

We can calculate the exponents oi prime by prime. In fact

oi = min(mi, ni).

In fact, as d divides a, we must have oi ≤ mi. As d divides b we must
have oi ≤ ni.
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