
5. Types of domains

It turns out that in number theory the fact that certain rings have
unique factorisation has very strong arithmetic consequences.

We first write down some definitions.

Definition 5.1. Let R be an integral domain.
If a and b are two elements of R then we say that a divides b,

denoted a|b, if b = ac. We say that u ∈ R is a unit if u has a
multiplicative inverse, that is, there is an element v ∈ R such that
uv = 1 = vu. We say that a and b are associates if a|b and b|a. We
say that p is prime, if the only divisors of p are units or associates of
p.

Lemma 5.2. Let R be an integral domain and let a and b be two non-
zero elements of R.
The following are equivalent:

(1) a and b are associates.
(2) There is a unit u such that a = ub.

Proof. Suppose that (1) holds. As a|b we may find c ∈ R such that
b = ac. As b|a we may find d ∈ R such that a = bd. In this case

a = bd

= (cd)a.

Cancelling, we see that cd = 1. Thus d is a unit and so (2) holds.
Now suppose that (2) holds. Then certainly b|a. As u is a unit, it

follows uv = 1 for some v ∈ R. But then

va = v(ub)

= (vu)b

= 1 · b
= b.

Thus a|b and so a and b are associates. Thus (2) implies (1). �

In the ring Z, the units are ±1 and so the associates of 2 are ±2,
etc.

In general it can be quite hard to decide if a ring is a UFD (unique
factorisation domain, that is, unique factorisation holds in R). There
is one case it is relatively easy:

Definition 5.3. An integral domain is called a Euclidean domain
if there is a function

s : R− {0} −→ N ∪ {0},
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such that for every pair of non-zero elements a and b of R we have:

(1) s(ab) ≥ s(b) with equality if and only if a is a unit.
(2) there are elements q and r of R such that

a = qb+ r

where either r = 0 or s(r) < s(b).

The integers is a Euclidean domain where s(a) = |a|.

Theorem 5.4. The Gaussian integers

Z[i] = { a+ bi | a, b ∈ Z },
is a Euclidean domain.

Proof. We have already seen that Z[i] is an integral domain; in fact
C is a field (meaning you can add, subtract, multiply and divide by
non-zero elements of C) and any subset of a field which is closed under
addition, subtraction, and multiplication is automatically an integral
domain.

We define
s : Z[i]− {0} −→ N

by sending α = a+ bi to a2 + b2.
To see properties (1) and (2), it helps to think of complex numbers

in polar coordinates:
α = a+ bi = reiθ.

Here r is the distance to the origin and θ is the angle the line connecting
(0, 0) to (a, b) makes with the real line. Note that s(α) = r2, by
Pythagoras.

Note that α = a + bi is a unit if its multiplicative inverse in C is a
Gaussian integer.

1

α
=

1

a+ bi

=
a− bi

(a+ bi)(a− bi)

=
a− bi
a2 + b2

.

For this to be a Gaussian integer we need,

a

a2 + b2
and

b

a2 + b2

to be integers. It is easy to see this is only possible if a2 + b2 = 1, that
is, a = ±1 and b = 0, or a = 0 and b = ±1. Therefore the units of the
Gaussian integers are 1, −1, i and −i.
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(1) is an exercise for the reader. To see (2) it might help to un-
derstand geometrically how complex multiplication works. In polar
coordinates we multiply the two distances to the origin and we add the
two angles. If we want to divide β into α and get a small remainder, we
have to understand all possible multiples of β. The Gaussian integers
form a square lattice with integer vertices; after we multiply by β this
lattice gets rotated through an angle of θ and it is dilated by the factor
r, the distance of β to origin, so that the squares of the lattice are skew
and they have sides of length r. So we can always find a point of the
new lattice within r2/2, by Pythagoras.

Algebraically we proceed as follows. We can divide β into α to get
a complex number γ,

γ =
α

β
∈ C.

The only problem is that γ is not necessarily a Gaussian integer. Pick
the closest Gaussian integer q to γ. Note that the square of the distance
from γ to q is at most 1/2 (when γ is at the centre of a unit square
with integer coordinates). If we multiply both sides by β distances get
rescalled by a factor of r. It follows that the square of the distance
between α and qβ is at most r2/2. Thus

β = qα + ρ,

where either ρ = 0 or

s(ρ) ≤ r2

2
< r2 = s(β). �

Definition 5.5. We say that an integral domain R is a unique fac-
torisation domain (abbreviated to UFD) if every non-zero element
a of R is a product of a unit u and primes p1, p2, . . . , pk,

a = up1p2 . . . pk,

where the factorisation is unique up to re-ordering and associates.

Note that for the integers we might write

−6 = 2 · (−3) = 3 · (−2).

Theorem 5.6. Every Euclidean domain R is a UFD.

The easiest thing to check is that every element of R is either a unit
or a product of primes:

Lemma 5.7. Let R be a Euclidean domain.
If a is neither zero nor a unit then a is a product of primes.
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Proof. We may suppose that a 6= 0. We proceed by induction on
s(a) ∈ N. If s(a) = 1 then a is a unit and there is nothing to prove.
Suppose that we know the result for all natural numbers less than s(a).

There are two cases. If a is prime then we are done. Otherwise, we
may write a = bc, where b and c are not units. In this case

s(b) < s(a) and s(c) < s(a).

By induction we may find primes q1, q2, . . . , qk and r1, r2, . . . , rl such
that

b = q1q2 . . . qk and c = r1r2 . . . rl.

In this case

a = bc

= q1q2 . . . qk · r1r2 . . . rl.

Thus a is a product of primes. This completes the induction and the
proof. �

Now we turn to uniqueness. Once again the key property is that a
Euclidean domain has greatest common divisors and these are linear
combinations of the original elements.

Definition 5.8. Let a and b be two elements of an integral domain
R, not both zero. The greatest common divisor of a and b is an
element d ∈ R with the following properties

(1) d|a and d|b.
(2) If d′|a and d′|b then d′|d.

Note that not every ring has greatest common divisors.

Theorem 5.9. If R is a Euclidean domain then every pair of elements
a and b ∈ R, not both zero, has a gcd d ∈ R. Moreover there are
elements λ and µ of R such that that

d = λa+ µb.

Proof. If b = 0 then it is easy to see that d = a is the greatest common
divisor. In this case we may take λ = µ = 1. Similarly if a = 0.

So we may suppose that neither a nor b is zero. We may suppose that
s(a) ≤ s(b). We proceed by induction on s(a). As R is a Euclidean
domain we may write

b = qa+ r,

where either r = 0 or s(r) < s(a). If r = 0 then a is the greatest
common divisor and we may take λ = µ = 1. Otherwise s(r) < s(a).
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By induction a and r have a greatest common divisor d and we may
find λ and µ such that

d = λa+ µr.

Note that {a, b} and {a, r} have the same divisors. So d is also the
greatest common divisor of a and b. We have

d = λa+ µr

= λa+ µ(b− qa)

= (λ− µq)a+ µb. �

Corollary 5.10. Let R be a Euclidean domain.
If p is a prime and p|ab then either p|a or p|b.

Proof. We may suppose that p does not divide a. As the only divisors
of p are associates of p and units, and p does not divide a, it follows
that the greatest common divisor of p and a is 1.

By (5.9) it follows that we may find λ and µ ∈ R such that

1 = λp+ µa.

Multiplying both sides by b we get

b = b · 1
= b(λp+ µa)

= (bλ)p+ µab.

Now the first term is visibly divisible by p and the second term is
divisible by p by assumption. Thus p divides b. �

Lemma 5.11. Let R be a Euclidean domain.
If p and q are prime and p divides q then p and q are associates.

Proof. By assumption q = pa, for some a ∈ R. As q is prime it follows
that either p or a is a unit. p is not a unit as it is a prime. Thus a is a
unit and p and q are associates. �

Proof of (5.6). By (5.7) it suffices to prove uniqueness. Suppose that
we can factor a into two different products of primes,

q1 · q2 · · · · · qm = r1 · r2 · · · · · rn.
Consider the prime qm. It divides the LHS and so it divides the RHS.
But we have already shown that if a prime divides a product it must
divide one of the factors. Possibly reordering we may assume that qm
divides rn. As rn is prime (5.11) implies that qm and rn are associates.
It follows that rn = uqm, where u is a unit. But then cancelling, we
have

q1 · q2 · · · · · qm−1 = ur1 · r2 · · · · · rn−1.
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Note that ur1 is prime and an associate of r1. Thus we are done by
induction on the number of prime factors. �

Corollary 5.12. The Gaussian integers are a UFD.

Proof. By (5.4) the Gaussian integers are a Euclidean domain. Now
apply (5.6). �

There is one other rich source of Euclidean domains. Let R be a
ring. Let R[x] be the set of polynomials with coefficients in R,

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n,

so that a0, a1, . . . , an ∈ R. We can add two polynomials f(x) and g(x)
with coefficients in R in the obvious way; just add their coefficients. We
can multiply two polynomials with coefficients in R; just use the dis-
tributive law to multiply. With this rule of addition and multiplication,
R[x] becomes a ring.

For number theory, there are two very important examples, Z[x]
polynomials with integer coefficients and Q[x] polynomials with ratio-
nal coefficients. It is not hard to check that both rings are integral
domains. Q[x] is a Euclidean domain where the function

s : Q[x]− {0} −→ N ∪ {0},
just sends f(x) to its degree.

It follows, using a Lemma due to Gauss (which we won’t prove) that
Z[x] is also a UFD.
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