
7. Modular arithmetic

In this section we introduce modular arithmetic, which might also
be called clock arithmetic. If we use a twelve hour clock then 14:00 is
the same as 2, and so on.

Definition 7.1. Let a and b be two integers and let m be a natural
number. We say that a is congruent to b modulo m, denoted a ≡ b
mod m, if a− b is divisible by m.

For example, a = 10 and b = 16 are congruent modulo 3 as 16−10 =
6 = 3 · 2.

Note that if a is an integer then a, a+m, a+2m, . . . a−m, a−2m, . . . ,
are all congruent to a modulo m and the set of all integers congruent
to a modulo m is

[a] = { a+ km | k ∈ Z }.
It is convenient to introduce a little bit of abstraction:

Definition 7.2. Let X be a set. An equivalence relation ∼ is a
relation on X, which is

reflexive: For every x ∈ X, x ∼ x.
symmetric: For every x and y ∈ X, if x ∼ y then y ∼ x.
transitive: For every x and y and z ∈ X, if x ∼ y and y ∼ z then x ∼ z.

Lemma 7.3. Let ∼ be the relation on Z

a ∼ b if and only if a ≡ b mod m.

Then ∼ is an equivalence relation.

Proof. There are three things to check.
First we check reflexivity. Suppose that a ∈ Z is an integer. Then

a − a = 0 is divisible by m. But then a ∼ a by definition of ∼ and ∼
is reflexive.

Now we check symmetry. Suppose that a and b are integers and that
a ∼ b. Then a − b is divisible by m. Thus there is an integer k such
that a− b = mk. In this case

b− a = −(a− b)
= −mk
= m(−k).

But then by definition b ∼ a. Thus ∼ is symmetric.
Finally we check transitivity. Suppose that a ∼ b and b ∼ c. Then

a − b is divisible by m and b − c is divisible by m. Thus there are
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integers p and q such that a − b = mp and b − c = mq. On the other
hand

a− c = (a− b) + (b− c)
= mp+mq

= m(p+ q).

Thus a− c is divisible by m and so a ∼ c. Thus ∼ is transitive.
As ∼ is reflexive, symmetric and transitive, it is an equivalence re-

lation. �

On the other hand if we are given an equivalence relation, the natural
thing to do is to look at its equivalence classes.

Definition 7.4. Let ∼ be an equivalence relation on a set X. Let
a ∈ X be an element of X. The equivalence class of a is

[a] = { b ∈ X | b ∼ a }.

We have already seen that the equivalence classes of the equivalence
relation given above are

[a] = { a+ km | k ∈ Z }.

In general we denote the set of all equivalence classes by Zm.

Definition 7.5. Let X be a set. A partition P of X is a collection
of non-empty subsets Ai, i ∈ I, such that

(1) The Ai cover X, that is⋃
i∈I

Ai = X.

(2) The Ai are pairwise disjoint, that is, if i 6= j then

Ai ∩ Aj = ∅.

m = 2 then the equivalence relation above divides the integers into
two parts, the evens and the odds.

Lemma 7.6. Given an equivalence relation ∼ on X there is a unique
partition of X. The elements of the partition are the equivalence classes
of ∼ and vice-versa. That is, given a partition P of X we may construct
an equivalence relation ∼ on X such that the partition associated to ∼
is precisely P .

Concisely, the data of an equivalence relation is the same as the data
of a partition.
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Note that clock arithmetic makes sense. If it is 9 o’clock and you
want to meet someone six hour later, you are going to meet them at 3
o’clock.

Lemma 7.7. Fix a natural number m.
If a and b are congruent modulo m and c and d are congruent modulo

m then

a+ c ≡ b+ d mod m and a · c ≡ b · d mod m.

Proof. By assumption there are integers p and q such that a− b = mp
and c − d = mq. It follows that a = b + mp and c = d + mq. In this
case

a+ c = (b+mp) + (d+mq)

= b+ d+mp+mq

= (b+ d) +m(p+ q).

Thus (a+ c) ≡ (b+ d) mod m. Similarly

a · c = (b+mp) · (d+mq)

= bd+ bmq +mpd+mpmq

= bd+m(bq + pd+mpq).

Thus (a · c) ≡ (b · d) mod m. �

(7.7) looks innocuous but it is actually remarkably useful. It says we
can add and multiply equivalence classes together and get well-defined
answers:

[a] + [c] = [a+ c] and [a] · [c] = [ac].

To add together two equivalence classes, pick elements of each and add
those together to get another equivalence class. To multiply together
two equivalence classes, pick elements of each and multiply those to-
gether to get another equivalence class.

One easy example is as follows. If m = 2 then the equivalence classes
are odd and even. even plus even is even, odd plus odd is even and odd
plus even is odd. Similarly, even times even is even, odd times odd is
odd and odd times even is odd.

It is important to realise that defining a function simply by picking
representatives usually does not work. For example, imagine assigning
a month of the year to a letter of the alphabet as follows. Define
an equivalence relation on the set of undergraduates by declaring two
undergraduates to be equivalent if they have the same first initial.

The equivalence classes are the set of all first initials, that is, the
alphabet. Define a function from the equivalence classes to the months
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of the year, by picking an undergraduate with that first initial and
taking the month of their birth. It is clear this function is not going to
be well-defined. There will be plenty of people in the equivalence class
J and it is inconceivable they were all born the same month.

Theorem 7.8. Fix a natural number m > 1.
The equivalence classes Zm is a ring, with addition and multiplication

defined above.

Proof. All of the axioms for a ring follow automatically, once we know
we have a well-defined addition and multiplication. [0] plays the role
of zero, [1] plays the role of one, [0] 6= [1] as m > 1, −[a] = [−a] and it
is easy to check all of the axioms. �

When m = 2, the evens are zero and the odds are one. This actually
forces the rules for addition and multiplication.

Let us look at a simple example. Suppose we take m = 6. It is not
hard to see that

[0], [1], [2], [3], [4], and [5],

exhaust all equivalence classes. We have the following addition and
multiplication tables

+ [0] [1] [2] [3] [4] [5]
[0] [0] [1] [2] [3] [4] [5]
[1] [1] [2] [3] [4] [5] [0]
[2] [2] [3] [4] [5] [0] [1]
[3] [3] [4] [5] [0] [1] [2]
[4] [4] [5] [0] [1] [2] [3]
[5] [5] [0] [1] [2] [3] [3]

× [0] [1] [2] [3] [4] [5]
[0] [0] [0] [0] [0] [0] [0]
[1] [0] [1] [2] [3] [4] [5]
[2] [0] [2] [4] [0] [2] [4]
[3] [0] [3] [0] [3] [0] [3]
[4] [0] [4] [2] [0] [4] [2]
[5] [0] [5] [4] [3] [2] [1].

Note that even though we have a ring, we don’t have an integral
domain. For example,

[2] · [3] = [2 · 3]

= [6]

= [0].

Thus there are two non-zero elements of Z6, [2] and [3], whose prod-
uct is zero.

Definition 7.9. Let φ : R −→ S be a function between two rings. We
say that φ is a ring homomorphism if φ all of the ring operations,

φ(a+ b) = φ(a) + φ(b) φ(a · b) = φ(a) · φ(b) and φ(1) = 1.
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Using (7.9) we can summarise everything we have done in this lecture
by saying that the function

φ : Z −→ Zm given by φ(a) = [a],

is a ring homomorphism.
Let us finish by giving some applications of modular arithmetic. We

already mentioned that Fermat proved (observed?) that any natural
number is the sum of four squares. He also proved that if a prime is
congruent to 1 modulo 4, so that it is of the form 4k+ 1, then it is the
sum of two squares.

Let’s show the reverse direction, for any odd prime. The trick is to
compute the possible congruence classes of squares. Suppose that a is
an integer. We can write a = 4k + r, where r = 0, 1, 2 or 3. Then

a2 = (4k + r)2

= 16k2 + 8kr + r2

≡ r2 mod 8.

Thus a2 is congruent to r2. But

02 = 0 12 = 1 22 = 4 ≡ 0 mod 4 and 32 = 9 ≡ 1 mod 4.

Thus we only get 0 or 1. In the language of equivalence classes,

[a]2 = [a2]

= [r2],

and [r2] = [0] or [1]. Thus if p is a prime and p = a2 + b2 then

[p] = [a2] + [b2],

so that

[p] = [0] + [0] = [0]

[p] = [0] + [1] = [1]

[p] = [1] + [0] = [1]

[p] = [1] + [1] = [2],

that is, [p] = [0], p = [1] or p = [2]. As p is odd, we must have [p] = [1],
so that p = 4k + 1, for some integer k.

Theorem 7.10. Let m > 1 be an integer. Let f(x1, x2, . . . , xn) be
a polynomial in the variables x1, x2, . . . , xn with integer coefficients. If
a1, a2, . . . , an and b1, b2, . . . , bn are two sequences of integers and aj ≡ bj
mod m then f(a1, a2, . . . , an) ≡ f(b1, b2, . . . , bn) mod m.
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We skip the proof of (7.10). We give a proof in the homework for
one variable and the general case proceeds by induction on n. The key
point is to realise that any polynomial is built up by repeated addition
and multiplication, so the result follows from the fact that equivalence
modulo m respects addition and multiplication.

We will need two results.

Theorem 7.11. Let k be a non-zero integer.
If (k,m) = d and ka ≡ kb mod m then a ≡ b mod (m/d).

Proof. Suppose first that d = 1. We may find integers λ and µ such
that

1 = λk + µm.

If we multiply both sides by a− b we get

a− b = λk(a− b) + µm.

By assumption m divides k(a − b) and so m divides a − b. But then
a ≡ b mod m.

In general, note that (k/d,m/d) = 1. As m divides k(a−b) it follows
that m/d divides (k/d)(a − b). Thus (k/d)a ≡ (k/d)b mod m/d and
by what we already proved we conclude that a ≡ b mod (m/d). �

Theorem 7.12. Let m > 1 be an integer.

(1) If m is composite then Zm is not an integral domain.
(2) If p is prime then Zp is a field.

In particular Zm is an integral domain if and only if m is prime.

Proof. Suppose that m is composite. Then m = ab, for integers a > 1
and b > 1. In particular a < m and b < m.

In this case

[a] · [b] = [a · b]
= [m]

= [0]

= 0.

As [a] 6= 0 and [b] 6= 0, this shows that Zm is not an integral domain.
This is (1).

Now suppose that p is a prime. We have to show that every non-
zero element of Zp is a unit, that is, every element has a multiplicative
inverse. The non-zero elements of Z are represented by integers a that
are not multiples of p. As p is a prime number, it follows that (a, p) = 1.
But then we may find integers λ and µ such that

1 = λa+ µp.
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It follows that

1 = [1]

= [λa+ µp]

= [λ][a] + [µ][p]

= [λ][a].

Thus [λ] is the inverse of [a]. It follows that every non-zero element of
Zp is a unit. �
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