
8. Euler ϕ-function

We have already seen that Zm, the set of equivalence classes of the
integers modulo m, is naturally a ring. Now we will start to derive
some interesting consequences in number theory.

It is clear that the equivalence classes are represented by the integers
from zero to m − 1, [0], [1], [2], [3], . . . , [m − 1]. Indeed, if a is any
integer we may divide m into a to get a quotient and a remainder,

a = mq + r where 0 ≤ r ≤ m− 1.

In this case
[a] = [r].

From the point of view of number theory it is very interesting to
write down other sets of integers with the same properties.

Definition 8.1. A set S of integers is called a complete residue
system, modulo m, if every integer a ∈ Z is equivalent, modulo m, to
exactly one element of S.

We have already seen that

{ r ∈ Z | 0 ≤ r ≤ m− 1 } = { 0, 1, 2, . . . ,m− 2,m− 1 }
is a complete residue system. Sometimes it is convenient to shift so
that 0 is in the centre of the system

{ r ∈ Z | −m/2 < r ≤ m/2 } = { . . . ,−2,−1, 0, 1, 2, . . . }.
For example if m = 5 we would take −2, 1, 0, 1 and 2 and if m = 8 we
would take −3, −2, −1, 0, 1, 2, 3 and 4.

Fortunately it is very easy to determine if a set S is a complete
residue system:

Lemma 8.2. Let S ⊂ Z be a subset of the integers and let m be a
non-negative integer. If any two of the following two conditions hold
then so does the third, in which case S is a complete residue system.

(1) S has m elements.
(2) No two different elements of S are congruent.
(3) Every integer is congruent to at least one element of S.

Proof. We have already seen that

S0 = { r ∈ Z | 0 ≤ r ≤ m− 1 } = { 0, 1, 2, . . . ,m− 2,m− 1 }
is a complete residue system. Clearly S0 has m elements.

Note that there is a natural map

f : S −→ S0,
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which sends an element a of S to its residue modulo m.
Note that (1) holds if and only if S and S0 have the same number

of elements; (2) holds if and only if f is injective and (3) holds if and
only if f is surjective.

It is then easy to see that any two of (1), (2) and (3) imply the
third. �

We can use (8.2) to prove a nice:

Theorem 8.3. Let m be a positive integer and let a1, a2, . . . , am is a
complete residue system, modulo m. Suppose that b and k ∈ Z and
(k,m) = 1.

Then

ka1 + b, ka2 + b, . . . , kam + b,

is also a complete residue system, modulo m.

Proof. Note that if kai + b = kaj + b then ai = aj. Thus

ka1 + b, ka2 + b, . . . , kam + b,

is a sequence of m distinct integers. We check that (2) of (8.2) also
holds.

Suppose that

kai + b ≡ kaj + b mod m.

Then certainly

kai ≡ kaj mod m.

As (k,m) = 1, it follows by (7.11) that

ai ≡ aj mod m. �

We shall start dropping any reference to equivalence classes when we
work in the ring Zm. This is purely a matter of notational convenience.
The ring Zm has two operations, addition and multiplication. Note that

1

2 = 1 + 1

3 = 2 + 1 = 1 + 1 + 1

4 = 3 + 1 = 1 + 1 + 1 + 1,

and so on, give all the elements of Zm under addition. The group Zm

under addition is called cyclic and 1 is called a generator.
It is more interesting to figure out what happens under multiplica-

tion. If p is a prime then the non-zero elements of Zp are a group under
multiplication. We will see that it is always cyclic.
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For example, suppose we take p = 7. We have

22 = 4 23 = 8 ≡ 1 mod 7.

Thus

24 = 2 · 23

= 2 · 1
= 2.

If we keep going we will just get 1, 2 and 4 (there is a reason it is called
cyclic). Thus 2 is not a generator.

Now consider 3 instead of 2. We have

32 = 9 ≡ 2 mod 7 33 = 3 · 2 = 6 34 = 3 · 6 = 4 35 = 5 and 36 = 1.

Thus the non-zero elements of Z7 is a cyclic group with generator 3
(but not 2).

For general m, the non-zero elements of Zm do not form a group
under multiplication. We have already seen that the product of two
elements might be zero, so that the set of non-zero elements is not
closed under multiplication.

Definition 8.4. Let m > 1 be an integer. Um is the set of units of Zm.

It is not hard to check that Um is a group under multiplication.

Definition 8.5. The Euler ϕ-function

ϕ : N −→ N
just sends m to the cardinality of Um.

If p is a prime then every non-zero element of Zp is a unit, so that

ϕ(p) = p− 1.

Lemma 8.6. Let m > 1 and a ∈ Z be integers.
Then [a] is a unit if and only if (a,m) = 1.

Proof. If (a,m) = 1 then we can find integers λ and µ such that

1 = λa+ µm.

In this case

1 = [1]

= [λa+ µm]

= [λ][a] + [µ][m]

= [λ][a].

Thus [λ] is the inverse of [a].
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Conversely, suppose that [a] is a unit. Then we can find an integer
b such that

[a][b] = 1.

It follows that ab ≡ 1 mod m, that is, ab− 1 is divisible by m. Thus

ab− 1 = km,

for some integer k. Rearranging, we get

1 = (−b)a+ km.

Thus (a,m) = 1. �

Lemma 8.7. If m is a natural number then ϕ(m) is the number of
integers a from 0 to m− 1 coprime to m.

Proof. The elements of Zm are represented by the integers a from 0 to
m− 1 and [a] is a unit if and only if it is coprime to m. �

This gives an easy way to compute the Euler ϕ-function, at least for
small values of m. Suppose m = 6. Of the integers 0, 1, 2, 3, 4 and 5,
only 1 and 5 are coprime to 6. Thus ϕ(6) = 2.

Definition 8.8. A set S of integers is called a reduced residue sys-
tem, modulo m, if every integer coprime to m is equivalent to exactly
one element of m.

Lemma 8.9. Let S ⊂ Z be a subset of the integers and let m be a
non-negative integer. If any two of the following two hold conditions
then so does the third, in which case S is a reduced residue system.

(1) S has ϕ(m) elements.
(2) No two different elements of S are congruent.
(3) Every is congruent to at least one element of S.

Proof. A simple variation of the proof of (8.2) �

Theorem 8.10. Let m be a positive integer and let a1, a2, . . . , aϕ(m) is
a reduced residue system, modulo m.

If k ∈ Z is the coprime to m then ka1, ka2, . . . , kaϕ(m) is also a
reduced residue system, modulo m.

Proof. Similar, and simpler, than the proof of (8.3). �

Definition 8.11. We say that a function

f : N −→ N
is multiplicative if f(mn) = f(m)f(n), whenever m and n coprime.

Theorem 8.12. ϕ is multiplicative.
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Proof. Suppose that m = 1. Then mn = 1 · n = n so that

φ(m)φ(n) = φ(1)φ(n)

= φ(n)

= φ(1 · n)

= φ(mn).

Thus the result holds if m = 1. Similarly the result holds if n = 1.
Thus we may assume that m and n > 1. Consider the array

0 1 2 . . . m− 1
m m+ 1 m+ 2 . . . m+ (m− 1)
...

...
...

. . .
...

(n− 1)m (n− 1)m+ 1 (n− 1)m+ 2 . . . (n− 1)m+ (m− 1).

The last entry is nm − 1 and so this is a complete residue system,
modulo mn. Therefore ϕ(mn) is the number of elements of the array
comprime to mn.

Pick a column and suppose the first entry is a. The other entries in
that column are m + a, 2m + a, . . . , (n− 1)m + a and so every entry
in that column is congruent to a modulo m. So if a is not coprime to
m then no entry in that column is coprime to m, let alone mn. Thus
we can focus on those columns whose first entry a is coprime to a.

The first row is a complete residue system modulo m, so that ϕ(m)
elements of the first row are coprime to m. Thus there are only ϕ(m)
columns we need to focus on. On the other hand, the entries in this
column are the numbers m · 1 + a, m · 2 + a, m · 3 + a, and so they are
a complete residue system modulo n, by (8.3). Thus ϕ(n) elements of
this column are coprime to n.

Thus ϕ(m)ϕ(n) elements of the array are coprime to both m and n.
But as m and n are coprime, it follows that an integer l is coprime to
mn if and only if it is coprime to m and n. Thus ϕ(m)ϕ(n) elements
of the array are coprime to mn. �

Multiplicative functions are relatively easy to compute; if

n = pe11 p
e2
2 . . . penn

is the prime factorisation of n and f is multiplicative then

f(n) = f(pe11 )f(pe22 ) . . . f(penn ).

Therefore it suffices to compute

f(pe),

where p is a prime.
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Lemma 8.13. If p is a prime then

ϕ(pe) = pe − pe−1.

Proof. Consider the numbers from to 1 to pe. These are a complete
residue system. Now a is coprime to pe if and only if it is coprime to
p. In other words, a is not coprime to pe if and only if it is a multiple
of p. Of the numbers from 1 to pe, exactly

pe

p
= pe−1.

are multiples of p. Therefore the remaining

pe − pe−1

numbers are coprime to pe. �

Theorem 8.14. If
n = pe11 p

e2
2 . . . penn

is the prime factorisation of n then

ϕ(n) = (pe11 − pe1−1
1 )(pe22 − pe2−1

2 ) . . . (penn − pen−1
n ).

Question 8.15. How many units are there in the ring Z1656?

In other words, what is the cardinality of U1656? This is the same as
ϕ(1656). We first factor 1656.

1656 = 2 · 828

= 22 · 414

= 23 · 207

= 23 · 3 · 69

= 23 · 32 · 23.

We have

ϕ(1656) = ϕ(23 · 32 · 23)

= ϕ(23)ϕ(32)ϕ(23)

= (23 − 22)(32 − 3)(23− 1)

= 4 · 6 · 22

= 24 · 3 · 11

= 528.
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