8. Euler φ -function

We have already seen that \mathbb{Z}_m , the set of equivalence classes of the integers modulo m, is naturally a ring. Now we will start to derive some interesting consequences in number theory.

It is clear that the equivalence classes are represented by the integers from zero to m - 1, [0], [1], [2], [3], ..., [m - 1]. Indeed, if a is any integer we may divide m into a to get a quotient and a remainder,

$$a = mq + r$$
 where $0 \le r \le m - 1$.

In this case

$$[a] = [r].$$

From the point of view of number theory it is very interesting to write down other sets of integers with the same properties.

Definition 8.1. A set S of integers is called a **complete residue** system, modulo m, if every integer $a \in \mathbb{Z}$ is equivalent, modulo m, to exactly one element of S.

We have already seen that

$$\{r \in \mathbb{Z} \mid 0 \le r \le m-1\} = \{0, 1, 2, \dots, m-2, m-1\}$$

is a complete residue system. Sometimes it is convenient to shift so that 0 is in the centre of the system

$$\{r \in \mathbb{Z} \mid -m/2 < r \leq m/2\} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}.$$

For example if m = 5 we would take -2, 1, 0, 1 and 2 and if m = 8 we would take -3, -2, -1, 0, 1, 2, 3 and 4.

Fortunately it is very easy to determine if a set S is a complete residue system:

Lemma 8.2. Let $S \subset \mathbb{Z}$ be a subset of the integers and let m be a non-negative integer. If any two of the following two conditions hold then so does the third, in which case S is a complete residue system.

- (1) S has m elements.
- (2) No two different elements of S are congruent.
- (3) Every integer is congruent to at least one element of S.

Proof. We have already seen that

$$S_0 = \{ r \in \mathbb{Z} \mid 0 \le r \le m - 1 \} = \{ 0, 1, 2, \dots, m - 2, m - 1 \}$$

is a complete residue system. Clearly S_0 has m elements.

Note that there is a natural map

$$f\colon S \longrightarrow S_0,$$

which sends an element a of S to its residue modulo m.

Note that (1) holds if and only if S and S_0 have the same number of elements; (2) holds if and only if f is injective and (3) holds if and only if f is surjective.

It is then easy to see that any two of (1), (2) and (3) imply the third. $\hfill \Box$

We can use (8.2) to prove a nice:

Theorem 8.3. Let m be a positive integer and let a_1, a_2, \ldots, a_m is a complete residue system, modulo m. Suppose that b and $k \in \mathbb{Z}$ and (k, m) = 1.

Then

$$ka_1+b, \qquad ka_2+b, \qquad \ldots, \qquad ka_m+b_n$$

is also a complete residue system, modulo m.

Proof. Note that if $ka_i + b = ka_j + b$ then $a_i = a_j$. Thus

$$ka_1+b, \qquad ka_2+b, \qquad \dots, \qquad ka_m+b,$$

is a sequence of m distinct integers. We check that (2) of (8.2) also holds.

Suppose that

$$ka_i + b \equiv ka_i + b \mod m.$$

Then certainly

$$ka_i \equiv ka_j \mod m.$$

As (k, m) = 1, it follows by (7.11) that

$$a_i \equiv a_j \mod m.$$

We shall start dropping any reference to equivalence classes when we work in the ring \mathbb{Z}_m . This is purely a matter of notational convenience. The ring \mathbb{Z}_m has two operations, addition and multiplication. Note that

$$1 \\ 2 = 1 + 1 \\ 3 = 2 + 1 = 1 + 1 + 1 \\ 4 = 3 + 1 = 1 + 1 + 1 + 1$$

and so on, give all the elements of \mathbb{Z}_m under addition. The group \mathbb{Z}_m under addition is called **cyclic** and 1 is called a generator.

It is more interesting to figure out what happens under multiplication. If p is a prime then the non-zero elements of \mathbb{Z}_p are a group under multiplication. We will see that it is always cyclic. For example, suppose we take p = 7. We have

$$2^2 = 4$$
 $2^3 = 8 \equiv 1 \mod 7.$

Thus

$$2^4 = 2 \cdot 2^3$$
$$= 2 \cdot 1$$
$$= 2.$$

If we keep going we will just get 1, 2 and 4 (there is a reason it is called cyclic). Thus 2 is not a generator.

Now consider 3 instead of 2. We have

 $3^2 = 9 \equiv 2 \mod 7$ $3^3 = 3 \cdot 2 = 6$ $3^4 = 3 \cdot 6 = 4$ $3^5 = 5$ and $3^6 = 1$. Thus the non-zero elements of \mathbb{Z}_7 is a cyclic group with generator 3 (but not 2).

For general m, the non-zero elements of \mathbb{Z}_m do not form a group under multiplication. We have already seen that the product of two elements might be zero, so that the set of non-zero elements is not closed under multiplication.

Definition 8.4. Let m > 1 be an integer. U_m is the set of units of \mathbb{Z}_m .

It is not hard to check that U_m is a group under multiplication.

Definition 8.5. The Euler φ -function

 $\varphi \colon \mathbb{N} \longrightarrow \mathbb{N}$

just sends m to the cardinality of U_m .

If p is a prime then every non-zero element of \mathbb{Z}_p is a unit, so that

 $\varphi(p) = p - 1.$

Lemma 8.6. Let m > 1 and $a \in \mathbb{Z}$ be integers. Then [a] is a unit if and only if (a, m) = 1.

Proof. If (a, m) = 1 then we can find integers λ and μ such that

$$1 = \lambda a + \mu m.$$

In this case

$$1 = [1]$$

= $[\lambda a + \mu m]$
= $[\lambda][a] + [\mu][m]$
= $[\lambda][a].$

Thus $[\lambda]$ is the inverse of [a].

Conversely, suppose that [a] is a unit. Then we can find an integer b such that

$$[a][b] = 1.$$

It follows that $ab \equiv 1 \mod m$, that is, ab - 1 is divisible by m. Thus

ab - 1 = km,

for some integer k. Rearranging, we get

$$1 = (-b)a + km.$$

Thus (a, m) = 1.

Lemma 8.7. If m is a natural number then $\varphi(m)$ is the number of integers a from 0 to m - 1 coprime to m.

Proof. The elements of \mathbb{Z}_m are represented by the integers a from 0 to m-1 and [a] is a unit if and only if it is coprime to m.

This gives an easy way to compute the Euler φ -function, at least for small values of m. Suppose m = 6. Of the integers 0, 1, 2, 3, 4 and 5, only 1 and 5 are coprime to 6. Thus $\varphi(6) = 2$.

Definition 8.8. A set S of integers is called a **reduced residue sys**tem, modulo m, if every integer coprime to m is equivalent to exactly one element of m.

Lemma 8.9. Let $S \subset \mathbb{Z}$ be a subset of the integers and let m be a non-negative integer. If any two of the following two hold conditions then so does the third, in which case S is a reduced residue system.

- (1) S has $\varphi(m)$ elements.
- (2) No two different elements of S are congruent.

(3) Every is congruent to at least one element of S.

Proof. A simple variation of the proof of (8.2)

Theorem 8.10. Let *m* be a positive integer and let $a_1, a_2, \ldots, a_{\varphi(m)}$ is a reduced residue system, modulo *m*.

If $k \in \mathbb{Z}$ is the coprime to m then $ka_1, ka_2, \ldots, ka_{\varphi(m)}$ is also a reduced residue system, modulo m.

Proof. Similar, and simpler, than the proof of (8.3).

Definition 8.11. We say that a function

 $f\colon \mathbb{N} \longrightarrow \mathbb{N}$

is multiplicative if f(mn) = f(m)f(n), whenever m and n coprime.

Theorem 8.12. φ is multiplicative.

Proof. Suppose that m = 1. Then $mn = 1 \cdot n = n$ so that

$$\phi(m)\phi(n) = \phi(1)\phi(n)$$
$$= \phi(n)$$
$$= \phi(1 \cdot n)$$
$$= \phi(mn).$$

Thus the result holds if m = 1. Similarly the result holds if n = 1. Thus we may assume that m and n > 1. Consider the array

The last entry is nm - 1 and so this is a complete residue system, modulo mn. Therefore $\varphi(mn)$ is the number of elements of the array comprime to mn.

Pick a column and suppose the first entry is a. The other entries in that column are m + a, 2m + a, ..., (n - 1)m + a and so every entry in that column is congruent to a modulo m. So if a is not coprime to m then no entry in that column is coprime to m, let alone mn. Thus we can focus on those columns whose first entry a is coprime to a.

The first row is a complete residue system modulo m, so that $\varphi(m)$ elements of the first row are coprime to m. Thus there are only $\varphi(m)$ columns we need to focus on. On the other hand, the entries in this column are the numbers $m \cdot 1 + a$, $m \cdot 2 + a$, $m \cdot 3 + a$, and so they are a complete residue system modulo n, by (8.3). Thus $\varphi(n)$ elements of this column are coprime to n.

Thus $\varphi(m)\varphi(n)$ elements of the array are coprime to both m and n. But as m and n are coprime, it follows that an integer l is coprime to mn if and only if it is coprime to m and n. Thus $\varphi(m)\varphi(n)$ elements of the array are coprime to mn.

Multiplicative functions are relatively easy to compute; if

$$n = p_1^{e_1} p_2^{e_2} \dots p_n^{e_r}$$

is the prime factorisation of n and f is multiplicative then

$$f(n) = f(p_1^{e_1})f(p_2^{e_2})\dots f(p_n^{e_n})$$

Therefore it suffices to compute

 $f(p^e),$

where p is a prime.

Lemma 8.13. If p is a prime then

$$\varphi(p^e) = p^e - p^{e-1}.$$

Proof. Consider the numbers from to 1 to p^e . These are a complete residue system. Now a is coprime to p^e if and only if it is coprime to p. In other words, a is not coprime to p^e if and only if it is a multiple of p. Of the numbers from 1 to p^e , exactly

$$\frac{p^e}{p} = p^{e-1}.$$

are multiples of p. Therefore the remaining

$$p^{e} - p^{e-1}$$

numbers are coprime to p^e .

Theorem 8.14. *If*

$$n = p_1^{e_1} p_2^{e_2} \dots p_n^{e_n}$$

is the prime factorisation of n then

$$\varphi(n) = (p_1^{e_1} - p_1^{e_1-1})(p_2^{e_2} - p_2^{e_2-1})\dots(p_n^{e_n} - p_n^{e_n-1}).$$

Question 8.15. How many units are there in the ring \mathbb{Z}_{1656} ?

In other words, what is the cardinality of U_{1656} ? This is the same as $\varphi(1656)$. We first factor 1656.

$$1656 = 2 \cdot 828$$

= 2² \cdot 414
= 2³ \cdot 207
= 2³ \cdot 3 \cdot 69
= 2³ \cdot 3² \cdot 23.

We have

$$\varphi(1656) = \varphi(2^3 \cdot 3^2 \cdot 23) = \varphi(2^3)\varphi(3^2)\varphi(23) = (2^3 - 2^2)(3^2 - 3)(23 - 1) = 4 \cdot 6 \cdot 22 = 2^4 \cdot 3 \cdot 11 = 528.$$