8. Euler \(\varphi \)-function

We have already seen that \(\mathbb{Z}_m \), the set of equivalence classes of the integers modulo \(m \), is naturally a ring. Now we will start to derive some interesting consequences in number theory.

It is clear that the equivalence classes are represented by the integers from zero to \(m - 1 \), \([0]\), \([1]\), \([2]\), \([3]\), \ldots, \([m - 1]\). Indeed, if \(a \) is any integer we may divide \(m \) into \(a \) to get a quotient and a remainder,

\[a = mq + r \quad \text{where} \quad 0 \leq r \leq m - 1. \]

In this case

\[[a] = [r]. \]

From the point of view of number theory it is very interesting to write down other sets of integers with the same properties.

Definition 8.1. A set \(S \) of integers is called a **complete residue system**, modulo \(m \), if every integer \(a \in \mathbb{Z} \) is equivalent, modulo \(m \), to exactly one element of \(S \).

We have already seen that

\[\{ r \in \mathbb{Z} | 0 \leq r \leq m - 1 \} = \{ 0, 1, 2, \ldots, m - 2, m - 1 \} \]

is a complete residue system. Sometimes it is convenient to shift so that 0 is in the centre of the system

\[\{ r \in \mathbb{Z} | -m/2 < r \leq m/2 \} = \{ \ldots, -2, -1, 0, 1, 2, \ldots \}. \]

For example if \(m = 5 \) we would take \(-2, 1, 0, 1, 2\) and if \(m = 8 \) we would take \(-3, -2, -1, 0, 1, 2, 3 \) and 4.

Fortunately it is very easy to determine if a set \(S \) is a complete residue system:

Lemma 8.2. Let \(S \subset \mathbb{Z} \) be a subset of the integers and let \(m \) be a non-negative integer. If any two of the following two hold conditions then so does the third, in which case \(S \) is a complete residue system.

1. \(S \) has \(m \) elements.
2. No two different elements of \(S \) are congruent.
3. Every integer is congruent to at least one element of \(S \).

Proof. We have already seen that

\[S_0 = \{ r \in \mathbb{Z} | 0 \leq r \leq m - 1 \} = \{ 0, 1, 2, \ldots, m - 2, m - 1 \} \]

is a complete residue system. Clearly \(S_0 \) has \(m \) elements.

Note that there is a natural map

\[f: S \to S_0, \]
which sends an element \(a \) of \(S \) to its residue modulo \(m \).

Note that (1) holds if and only if \(S \) and \(S_0 \) have the same number of elements; (2) holds if and only if \(f \) is injective and (3) holds if and only if \(f \) is surjective.

It is then easy to see that any two of (1), (2) and (3) imply the third. \(\square \)

We can use \([8.2]\) to prove a nice:

Theorem 8.3. Let \(m \) be a positive integer and let \(a_1, a_2, \ldots, a_m \) is a complete residue system, modulo \(m \). Suppose that \(b \) and \(k \in \mathbb{Z} \) and \((k, m) = 1 \).

Then
\[
ka_1 + b, \quad ka_2 + b, \quad \ldots, \quad ka_m + b,
\]
is also a complete residue system, modulo \(m \).

Proof. Note that if \(ka_i + b = ka_j + b \) then \(a_i = a_j \). Thus
\[
ka_1 + b, \quad ka_2 + b, \quad \ldots, \quad ka_m + b,
\]
is a sequence of \(m \) distinct integers. We check that (2) of \([8.2]\) also holds.

Suppose that
\[
ka_i + b \equiv ka_j + b \mod m.
\]
Then certainly
\[
ka_i \equiv ka_j \mod m.
\]
As \((k, m) = 1 \), it follows by (7.11) that
\[
a_i \equiv a_j \mod m. \quad \square
\]

We shall start dropping any reference to equivalence classes when we work in the ring \(\mathbb{Z}_m \). This is purely a matter of notational convenience. The ring \(\mathbb{Z}_m \) has two operations, addition and multiplication. Note that
\[
1 \\
2 = 1 + 1 \\
3 = 2 + 1 = 1 + 1 + 1 \\
4 = 3 + 1 = 1 + 1 + 1 + 1,
\]
and so on, give all the elements of \(\mathbb{Z}_m \) under addition. The group \(\mathbb{Z}_m \) under addition is called **cyclic** and \(1 \) is called a generator.

It is more interesting to figure out what happens under multiplication. If \(p \) is a prime then the non-zero elements of \(\mathbb{Z}_p \) are a group under multiplication. We will see that it is always cyclic.
For example, suppose we take $p = 7$. We have
$$2^2 = 4 \quad 2^3 = 8 \equiv 1 \mod 7.$$ Thus
$$2^4 = 2 \cdot 2^3 = 2 \cdot 1 = 2.$$ If we keep going we will just get 1, 2 and 4 (there is a reason it is called cyclic). Thus 2 is not a generator.

Now consider 3 instead of 2. We have
$$3^2 = 9 \equiv 2 \mod 7 \quad 3^3 = 3 \cdot 2 = 6 \quad 3^4 = 3 \cdot 6 = 4 \quad 3^5 = 5 \quad \text{and} \quad 3^6 = 1.$$ Thus the non-zero elements of \mathbb{Z}_7 is a cyclic group with generator 3 (but not 2).

For general m, the non-zero elements of \mathbb{Z}_m do not form a group under multiplication. We have already seen that the product of two elements might be zero, so that the set of non-zero elements is not closed under multiplication.

Definition 8.4. Let $m > 1$ be an integer. U_m is the set of units of \mathbb{Z}_m.

It is not hard to check that U_m is a group under multiplication.

Definition 8.5. The Euler φ-function
$$\varphi : \mathbb{N} \longrightarrow \mathbb{N}$$ just sends m to the cardinality of U_m.

If p is a prime then every non-zero element of \mathbb{Z}_p is a unit, so that
$$\varphi(p) = p - 1.$$ **Lemma 8.6.** Let $m > 1$ and $a \in \mathbb{Z}$ be integers.

Then $[a]$ is a unit if and only if $(a, m) = 1$.

Proof. If $(a, m) = 1$ then we can find integers λ and μ such that
$$1 = \lambda a + \mu m.$$ In this case
$$1 = [1] = [\lambda a + \mu m] = [\lambda][a] + [\mu][m] = [\lambda][a].$$ Thus $[\lambda]$ is the inverse of $[a]$.
Conversely, suppose that \([a]\) is a unit. Then we can find an integer \(b\) such that
\[
[a][b] = 1.
\]
It follows that \(ab \equiv 1 \mod m\), that is, \(ab - 1\) is divisible by \(m\). Thus
\[
ab - 1 = km,
\]
for some integer \(k\). Rearranging, we get
\[
1 = (-b)a + km.
\]
Thus \((a, m) = 1\). \(\square\)

Lemma 8.7. If \(m\) is a natural number then \(\varphi(m)\) is the number of integers \(a\) from 0 to \(m - 1\) coprime to \(m\).

Proof. The elements of \(\mathbb{Z}_m\) are represented by the integers \(a\) from 0 to \(m - 1\) and \([a]\) is a unit if and only if it is coprime to \(m\). \(\square\)

This gives an easy way to compute the Euler \(\varphi\)-function, at least for small values of \(m\). Suppose \(m = 6\). Of the integers 0, 1, 2, 3, 4 and 5, only 1 and 5 are coprime to 6. Thus \(\varphi(6) = 2\).

Definition 8.8. A set \(S\) of integers is called a **reduced residue system**, modulo \(m\), if every integer coprime to \(m\) is equal to exactly one element of \(m\).

Lemma 8.9. Let \(S \subset \mathbb{Z}\) be a subset of the integers and let \(m\) be a non-negative integer. If any two of the following two hold conditions then so does the third, in which case \(S\) is a reduced residue system.

1. \(S\) has \(\varphi(m)\) elements.
2. No two different elements of \(S\) are congruent.
3. Every is congruent to at least one element of \(S\).

Proof. A simple variation of the proof of (8.2) \(\square\)

Theorem 8.10. Let \(m\) be a positive integer and let \(a_1, a_2, \ldots, a_{\varphi(m)}\) is a reduced residue system, modulo \(m\).

If \(k \in \mathbb{Z}\) is the coprime to \(m\) then \(ka_1, ka_2, \ldots, ka_{\varphi(m)}\) is also a reduced residue system, modulo \(m\).

Proof. Similar, and simpler, than the proof of (8.3). \(\square\)

Definition 8.11. We say that a function
\[
f: \mathbb{N} \longrightarrow \mathbb{N}
\]
is multiplicative if \(f(mn) = f(m)f(n)\), whenever \(m\) and \(n\) coprime.

Theorem 8.12. \(\varphi\) is multiplicative.
Proof. Suppose that $m = 1$. Then $mn = 1 \cdot n = n$ so that
\[
\phi(m)\phi(n) = \phi(1)\phi(n) \\
= \phi(n) \\
= \phi(1 \cdot n) \\
= \phi(mn).
\]
Thus the result holds if $m = 1$. Similarly the result holds if $n = 1$.
Thus we may assume that m and $n > 1$. Consider the array
\[
\begin{array}{cccccc}
0 & 1 & 2 & \ldots & m - 1 \\
m & m + 1 & m + 2 & \ldots & m + (m - 1) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
(n - 1)m & (n - 1)m + 1 & (n - 1)m + 2 & \ldots & (n - 1)m + (m - 1).
\end{array}
\]
The last entry is $nm - 1$ and so this is a complete residue system, modulo mn. Therefore $\varphi(mn)$ is the number of elements of the array comprime to mn.

Pick a column and suppose the first entry is a. The other entries in that column are $m + a$, $2m + a$, \ldots, $(n - 1)m + a$ and so every entry in that column is congruent to a modulo m. So if a is not coprime to m then no entry in that column is coprime to m, let alone mn. Thus we can focus on those columns whose first entry a is coprime to a.

The first row is a complete residue system modulo m, so that $\varphi(m)$ elements of the first row are coprime to m. Thus there are only $\varphi(m)$ columns we need to focus on. On the other hand, the entries in this column are the numbers $m \cdot 1 + a$, $m \cdot 2 + a$, $m \cdot 3 + a$, and so they are a complete residue system modulo n, by (8.3). Thus $\varphi(n)$ elements of this column are coprime to n.

Thus $\varphi(m)\varphi(n)$ elements of the array are coprime to both m and n. But as m and n are coprime, it follows that an integer l is coprime to mn if and only if it is coprime to m and n. Thus $\varphi(m)\varphi(n)$ elements of the array are coprime to mn. \[\square\]

Multiplicative functions are relatively easy to compute; if
\[n = p_1^{e_1}p_2^{e_2} \ldots p_n^{e_n}\]
is the prime factorisation of n and f is multiplicative then
\[f(n) = f(p_1^{e_1})f(p_2^{e_2}) \ldots f(p_n^{e_n}).\]
Therefore it suffices to compute
\[f(p^e),\]
where p is a prime.
Lemma 8.13. If \(p \) is a prime then
\[
\phi(p^e) = p^e - p^{e-1}.
\]

Proof. Consider the numbers from to 1 to \(p^e \). These are a complete residue system. Now \(a \) is coprime to \(p^e \) if and only if it is coprime to \(p \). In other words, \(a \) is not coprime to \(p^e \) if and only if it is a multiple of \(p \). Of the numbers from 1 to \(p^e \), exactly
\[
\frac{p^e}{p} = p^{e-1}.
\]
are multiples of \(p \). Therefore the remaining
\[
p^e - p^{e-1}
\]
numbers are coprime to \(p^e \).

\[\square \]

Theorem 8.14. If
\[
n = p_1^{e_1}p_2^{e_2} \cdots p_n^{e_n}
\]
is the prime factorisation of \(n \) then
\[
\phi(n) = (p_1^{e_1} - p_1^{e_1 - 1})(p_2^{e_2} - p_2^{e_2 - 1}) \cdots (p_n^{e_n} - p_n^{e_n - 1}).
\]

Question 8.15. How many units are there in the ring \(\mathbb{Z}_{1656} \)?

In other words, what is the cardinality of \(U_{1656} \)? This is the same as \(\phi(1656) \). We first factor 1656.

\[
1656 = 2 \cdot 828
\]
\[
= 2 \cdot 414
\]
\[
= 2 \cdot 207
\]
\[
= 2 \cdot 3 \cdot 69
\]
\[
= 2 \cdot 3^2 \cdot 23.
\]

We have
\[
\phi(1656) = \phi(2 \cdot 3^2 \cdot 23)
\]
\[
= \phi(2^2) \phi(3^2) \phi(23)
\]
\[
= (2^3 - 2^2)(3^2 - 3)(23 - 1)
\]
\[
= 4 \cdot 6 \cdot 22
\]
\[
= 2^4 \cdot 3 \cdot 11
\]
\[
= 528.
\]

Theorem 8.16 (Euler’s Theorem). If \(a \) and \(m \) are integers and \((a, m) = 1 \) then
\[
a^{\phi(m)} \equiv 1 \mod m.
\]
Proof. Pick a reduced residue system \(a_1, a_2, \ldots, a_{\varphi(m)} \). By (8.10)

\[aa_1, aa_2, \ldots, aa_{\varphi(m)} \]
is also a reduced residue system. It follows that both products are equal modulo \(m \),

\[(aa_1)(aa_2) \cdots (aa_{\varphi(m)}) \equiv a_1a_2a_3 \cdots a_{\varphi(m)} \mod m. \]

Rearranging, we get

\[a_{\varphi(m)}^{a_1a_2a_3} \cdots a_{\varphi(m)} \equiv a_1a_2a_3 \cdots a_{\varphi(m)} \mod m. \]

As we have a group, we can cancel \(a_1a_2a_3 \cdots a_{\varphi(m)} \) from both sides, to get

\[a_{\varphi(m)} \equiv 1 \mod m. \]

\[\square\]

Corollary 8.17 (Fermat’s little Theorem). Let \(p \) be a prime and let \(a \) be an integer.

If \(a \) is coprime to \(p \) then

\[a^{p-1} \equiv 1 \mod p. \]

In particular

\[a^p \equiv a \mod p. \]

Proof. \(\varphi(p) = p - 1 \) and so the first statement follows from (8.16). For the second statement there are two cases. If \((a, p) = 1 \) multiply both sides of

\[a^{p-1} \equiv 1 \mod p \]

by \(a \). If \((a, p) \neq 1 \) then \(a \) is a multiple of \(p \) and \(a \equiv 0 \mod p \). The equation

\[a^p \equiv a \mod p \]

is true as zero equals zero. \[\square\]