8. Euler φ-FUNCTION

We have already seen that \mathbb{Z}_{m}, the set of equivalence classes of the integers modulo m, is naturally a ring. Now we will start to derive some interesting consequences in number theory.

It is clear that the equivalence classes are represented by the integers from zero to $m-1,[0],[1],[2],[3], \ldots,[m-1]$. Indeed, if a is any integer we may divide m into a to get a quotient and a remainder,

$$
a=m q+r \quad \text { where } \quad 0 \leq r \leq m-1 .
$$

In this case

$$
[a]=[r] .
$$

From the point of view of number theory it is very interesting to write down other sets of integers with the same properties.

Definition 8.1. A set S of integers is called a complete residue system, modulo m, if every integer $a \in \mathbb{Z}$ is equivalent, modulo m, to exactly one element of S.

We have already seen that

$$
\{r \in \mathbb{Z} \mid 0 \leq r \leq m-1\}=\{0,1,2, \ldots, m-2, m-1\}
$$

is a complete residue system. Sometimes it is convenient to shift so that 0 is in the centre of the system

$$
\{r \in \mathbb{Z} \mid-m / 2<r \leq m / 2\}=\{\ldots,-2,-1,0,1,2, \ldots\} .
$$

For example if $m=5$ we would take $-2,1,0,1$ and 2 and if $m=8$ we would take $-3,-2,-1,0,1,2,3$ and 4 .

Fortunately it is very easy to determine if a set S is a complete residue system:

Lemma 8.2. Let $S \subset \mathbb{Z}$ be a subset of the integers and let m be a non-negative integer. If any two of the following two conditions hold then so does the third, in which case S is a complete residue system.
(1) S has m elements.
(2) No two different elements of S are congruent.
(3) Every integer is congruent to at least one element of S.

Proof. We have already seen that

$$
S_{0}=\{r \in \mathbb{Z} \mid 0 \leq r \leq m-1\}=\{0,1,2, \ldots, m-2, m-1\}
$$

is a complete residue system. Clearly S_{0} has m elements.
Note that there is a natural map

$$
f: S \underset{1}{\longrightarrow} S_{0}
$$

which sends an element a of S to its residue modulo m.
Note that (1) holds if and only if S and S_{0} have the same number of elements; (2) holds if and only if f is injective and (3) holds if and only if f is surjective.

It is then easy to see that any two of (1), (2) and (3) imply the third.

We can use (8.2) to prove a nice:
Theorem 8.3. Let m be a positive integer and let $a_{1}, a_{2}, \ldots, a_{m}$ is a complete residue system, modulo m. Suppose that b and $k \in \mathbb{Z}$ and $(k, m)=1$.

Then

$$
k a_{1}+b, \quad k a_{2}+b, \quad \ldots, \quad k a_{m}+b
$$

is also a complete residue system, modulo m.
Proof. Note that if $k a_{i}+b=k a_{j}+b$ then $a_{i}=a_{j}$. Thus

$$
k a_{1}+b, \quad k a_{2}+b, \quad \ldots, \quad k a_{m}+b
$$

is a sequence of m distinct integers. We check that (2) of (8.2) also holds.

Suppose that

$$
k a_{i}+b \equiv k a_{j}+b \quad \bmod m .
$$

Then certainly

$$
k a_{i} \equiv k a_{j} \quad \bmod m
$$

As $(k, m)=1$, it follows by (7.11) that

$$
a_{i} \equiv a_{j} \quad \bmod m
$$

We shall start dropping any reference to equivalence classes when we work in the ring \mathbb{Z}_{m}. This is purely a matter of notational convenience. The ring \mathbb{Z}_{m} has two operations, addition and multiplication. Note that

$$
\begin{aligned}
& 1 \\
& 2=1+1 \\
& 3=2+1=1+1+1 \\
& 4=3+1=1+1+1+1
\end{aligned}
$$

and so on, give all the elements of \mathbb{Z}_{m} under addition. The group \mathbb{Z}_{m} under addition is called cyclic and 1 is called a generator.

It is more interesting to figure out what happens under multiplication. If p is a prime then the non-zero elements of \mathbb{Z}_{p} are a group under multiplication. We will see that it is always cyclic.

For example, suppose we take $p=7$. We have

$$
2^{2}=4 \quad 2^{3}=8 \equiv 1 \quad \bmod 7
$$

Thus

$$
\begin{aligned}
2^{4} & =2 \cdot 2^{3} \\
& =2 \cdot 1 \\
& =2 .
\end{aligned}
$$

If we keep going we will just get 1,2 and 4 (there is a reason it is called cyclic). Thus 2 is not a generator.

Now consider 3 instead of 2 . We have

$$
3^{2}=9 \equiv 2 \quad \bmod 7 \quad 3^{3}=3 \cdot 2=6 \quad 3^{4}=3 \cdot 6=4 \quad 3^{5}=5 \quad \text { and } \quad 3^{6}=1 .
$$

Thus the non-zero elements of \mathbb{Z}_{7} is a cyclic group with generator 3 (but not 2).

For general m, the non-zero elements of \mathbb{Z}_{m} do not form a group under multiplication. We have already seen that the product of two elements might be zero, so that the set of non-zero elements is not closed under multiplication.

Definition 8.4. Let $m>1$ be an integer. U_{m} is the set of units of \mathbb{Z}_{m}.
It is not hard to check that U_{m} is a group under multiplication.
Definition 8.5. The Euler φ-function

$$
\varphi: \mathbb{N} \longrightarrow \mathbb{N}
$$

just sends m to the cardinality of U_{m}.
If p is a prime then every non-zero element of \mathbb{Z}_{p} is a unit, so that

$$
\varphi(p)=p-1
$$

Lemma 8.6. Let $m>1$ and $a \in \mathbb{Z}$ be integers.
Then $[a]$ is a unit if and only if $(a, m)=1$.
Proof. If $(a, m)=1$ then we can find integers λ and μ such that

$$
1=\lambda a+\mu m
$$

In this case

$$
\begin{aligned}
1 & =[1] \\
& =[\lambda a+\mu m] \\
& =[\lambda][a]+[\mu][m] \\
& =[\lambda][a] .
\end{aligned}
$$

Thus $[\lambda]$ is the inverse of $[a]$.

Conversely, suppose that $[a]$ is a unit. Then we can find an integer b such that

$$
[a][b]=1
$$

It follows that $a b \equiv 1 \bmod m$, that is, $a b-1$ is divisible by m. Thus

$$
a b-1=k m,
$$

for some integer k. Rearranging, we get

$$
1=(-b) a+k m
$$

Thus $(a, m)=1$.
Lemma 8.7. If m is a natural number then $\varphi(m)$ is the number of integers a from 0 to $m-1$ coprime to m.

Proof. The elements of \mathbb{Z}_{m} are represented by the integers a from 0 to $m-1$ and $[a]$ is a unit if and only if it is coprime to m.

This gives an easy way to compute the Euler φ-function, at least for small values of m. Suppose $m=6$. Of the integers $0,1,2,3,4$ and 5 , only 1 and 5 are coprime to 6 . Thus $\varphi(6)=2$.

Definition 8.8. A set S of integers is called a reduced residue system, modulo m, if every integer coprime to m is equivalent to exactly one element of m.
Lemma 8.9. Let $S \subset \mathbb{Z}$ be a subset of the integers and let m be a non-negative integer. If any two of the following two hold conditions then so does the third, in which case S is a reduced residue system.
(1) S has $\varphi(m)$ elements.
(2) No two different elements of S are congruent.
(3) Every is congruent to at least one element of S.

Proof. A simple variation of the proof of 8.2
Theorem 8.10. Let m be a positive integer and let $a_{1}, a_{2}, \ldots, a_{\varphi(m)}$ is a reduced residue system, modulo m.

If $k \in \mathbb{Z}$ is the coprime to m then $k a_{1}, k a_{2}, \ldots, k a_{\varphi(m)}$ is also a reduced residue system, modulo m.

Proof. Similar, and simpler, than the proof of (8.3).
Definition 8.11. We say that a function

$$
f: \mathbb{N} \longrightarrow \mathbb{N}
$$

is multiplicative if $f(m n)=f(m) f(n)$, whenever m and n coprime.
Theorem 8.12. φ is multiplicative.

Proof. Suppose that $m=1$. Then $m n=1 \cdot n=n$ so that

$$
\begin{aligned}
\phi(m) \phi(n) & =\phi(1) \phi(n) \\
& =\phi(n) \\
& =\phi(1 \cdot n) \\
& =\phi(m n) .
\end{aligned}
$$

Thus the result holds if $m=1$. Similarly the result holds if $n=1$. Thus we may assume that m and $n>1$. Consider the array

$$
\begin{array}{ccccc}
0 & 1 & 2 & \cdots & m-1 \\
m & m+1 & m+2 & \cdots & m+(m-1) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
(n-1) m & (n-1) m+1 & (n-1) m+2 & \cdots & (n-1) m+(m-1)
\end{array}
$$

The last entry is $n m-1$ and so this is a complete residue system, modulo $m n$. Therefore $\varphi(m n)$ is the number of elements of the array comprime to $m n$.

Pick a column and suppose the first entry is a. The other entries in that column are $m+a, 2 m+a, \ldots,(n-1) m+a$ and so every entry in that column is congruent to a modulo m. So if a is not coprime to m then no entry in that column is coprime to m, let alone $m n$. Thus we can focus on those columns whose first entry a is coprime to a.

The first row is a complete residue system modulo m, so that $\varphi(m)$ elements of the first row are coprime to m. Thus there are only $\varphi(m)$ columns we need to focus on. On the other hand, the entries in this column are the numbers $m \cdot 1+a, m \cdot 2+a, m \cdot 3+a$, and so they are a complete residue system modulo n, by (8.3). Thus $\varphi(n)$ elements of this column are coprime to n.

Thus $\varphi(m) \varphi(n)$ elements of the array are coprime to both m and n. But as m and n are coprime, it follows that an integer l is coprime to $m n$ if and only if it is coprime to m and n. Thus $\varphi(m) \varphi(n)$ elements of the array are coprime to $m n$.

Multiplicative functions are relatively easy to compute; if

$$
n=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{n}^{e_{n}}
$$

is the prime factorisation of n and f is multiplicative then

$$
f(n)=f\left(p_{1}^{e_{1}}\right) f\left(p_{2}^{e_{2}}\right) \ldots f\left(p_{n}^{e_{n}}\right) .
$$

Therefore it suffices to compute

$$
f\left(p^{e}\right)
$$

where p is a prime.

Lemma 8.13. If p is a prime then

$$
\varphi\left(p^{e}\right)=p^{e}-p^{e-1}
$$

Proof. Consider the numbers from to 1 to p^{e}. These are a complete residue system. Now a is coprime to p^{e} if and only if it is coprime to p. In other words, a is not coprime to p^{e} if and only if it is a multiple of p. Of the numbers from 1 to p^{e}, exactly

$$
\frac{p^{e}}{p}=p^{e-1}
$$

are multiples of p. Therefore the remaining

$$
p^{e}-p^{e-1}
$$

numbers are coprime to p^{e}.
Theorem 8.14. If

$$
n=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{n}^{e_{n}}
$$

is the prime factorisation of n then

$$
\varphi(n)=\left(p_{1}^{e_{1}}-p_{1}^{e_{1}-1}\right)\left(p_{2}^{e_{2}}-p_{2}^{e_{2}-1}\right) \ldots\left(p_{n}^{e_{n}}-p_{n}^{e_{n}-1}\right) .
$$

Question 8.15. How many units are there in the ring \mathbb{Z}_{1656} ?
In other words, what is the cardinality of U_{1656} ? This is the same as $\varphi(1656)$. We first factor 1656 .

$$
\begin{aligned}
1656 & =2 \cdot 828 \\
& =2^{2} \cdot 414 \\
& =2^{3} \cdot 207 \\
& =2^{3} \cdot 3 \cdot 69 \\
& =2^{3} \cdot 3^{2} \cdot 23 .
\end{aligned}
$$

We have

$$
\begin{aligned}
\varphi(1656) & =\varphi\left(2^{3} \cdot 3^{2} \cdot 23\right) \\
& =\varphi\left(2^{3}\right) \varphi\left(3^{2}\right) \varphi(23) \\
& =\left(2^{3}-2^{2}\right)\left(3^{2}-3\right)(23-1) \\
& =4 \cdot 6 \cdot 22 \\
& =2^{4} \cdot 3 \cdot 11 \\
& =528 .
\end{aligned}
$$

