9. Euler and Fermat Theorems

Theorem 9.1 (Euler's Theorem). If a and m are integers and $(a, m)=$ 1 then

$$
a^{\varphi(m)} \equiv 1 \quad \bmod m .
$$

Proof. Pick a reduced residue system $a_{1}, a_{2}, \ldots, a_{\varphi(m)}$. By (8.10)

$$
a a_{1}, a a_{2}, \ldots, a a_{\varphi(m)}
$$

is also a reduced residue system. It follows that both products are equal modulo m,

$$
\left(a a_{1}\right)\left(a a_{2}\right)\left(a a_{3}\right) \ldots\left(a a_{\varphi(m)}\right) \equiv a_{1} a_{2} a_{3} \ldots a_{\varphi(m)} \quad \bmod m
$$

Rearranging, we get

$$
a^{\varphi(m)} a_{1} a_{2} a_{3} \ldots a_{\varphi(m)} \equiv a_{1} a_{2} a_{3} \ldots a_{\varphi(m)} \quad \bmod m
$$

As we have a group, we can cancel $a_{1} a_{2} a_{3} \ldots a_{\varphi(m)}$ from both sides, to get

$$
a^{\varphi(m)} \equiv 1 \quad \bmod m .
$$

Corollary 9.2 (Fermat's little Theorem). Let p be a prime and let a be an integer.

If a is coprime to p then

$$
a^{p-1} \equiv 1 \quad \bmod p
$$

In particular

$$
a^{p} \equiv a \quad \bmod p
$$

Proof. $\varphi(p)=p-1$ and so the first statement follows from (9.1). For the second statement there are two cases. If $(a, p)=1$ multiply both sides of

$$
a^{p-1} \equiv 1 \quad \bmod p
$$

by a. If $(a, p) \neq 1$ then a is a multiple of p and $a \equiv 0 \bmod p$. The equation

$$
a^{p} \equiv a \quad \bmod p
$$

is true as zero equals zero.
Definition 9.3. Let $m>1$ be a natural number and let a be an integer coprime to m. The order of a is the smallest natural number t such that

$$
a^{t} \equiv 1 \quad \bmod m
$$

As

$$
a^{\varphi(m)} \equiv 1 \quad \bmod m,
$$

the order a is always at most $\varphi(m)$. Suppose we take $m=9=3^{2}$. Then

$$
\varphi(9)=9-3=6 .
$$

In fact $1,2,4,5,7,8$ is a reduced residue system.

$$
2^{2}=4 \quad 2^{3}=8 \quad 2^{4} \equiv 7 \quad 2^{5} \equiv 5 \quad \text { and } \quad 2^{6} \equiv 1 \quad \bmod 9
$$

Thus the order of 2 is 6 . On the other hand,

$$
5^{2} \equiv 2 \quad \text { and } \quad 5^{3} \equiv 1
$$

so that 5 has order 3 , and

$$
7^{2} \equiv 1
$$

so that 7 has order 2 .
Theorem 9.4. If $m>1$ is a natural number and a is an integer such that $(a, m)=1$ then the order of a divides $\varphi(m)$.
Proof. Let t be the order of a. If we divide t into $\varphi(m)$ we get

$$
\varphi(m)=q t+r
$$

where $0 \leq r<t$. We have

$$
\begin{aligned}
n & \equiv a^{\varphi(m)} \quad \bmod m \\
& =a^{q t+r} \\
& =\left(a^{t}\right)^{q}+a^{r} \\
& \equiv 1^{q}+a^{r} \quad \bmod m \\
& =a^{r} .
\end{aligned}
$$

As t is the smallest natural number such that $a^{t} \equiv 1 \bmod m, r$ is not a natural number, that is, $r=0$.

It follows that the order of a divides $\varphi(m)$.
Theorem 9.5. If n is a natural number then

$$
\sum_{d \mid n} \varphi(d)=n
$$

Proof. If a is a natural number between 1 and n then the greatest common divisor d of a and n is a divisor d of n.

Therefore we can partition the natural numbers from 1 to n into parts

$$
C_{d}=\{a \in \mathbb{N} \mid 1 \leq a \leq n,(a, n)=d\},
$$

where d ranges over the divisors of n.

If $a \in C_{d}$ then let $b=a / d$. It follows that $(b, n / d)=1$ and $1 \leq b \leq$ n / d. Given b, note that $a=b d$. Thus

$$
C_{d}=\{a \in \mathbb{N} \mid a=b d, 1 \leq b \leq n / d,(b, n / d)=1\} .
$$

It follows that the cardinality of C_{d} is simply the number of integers between 1 and n / d coprime to n / d. We have

$$
\begin{aligned}
1 & =|\{a \in \mathbb{N} \mid 1 \leq a \leq n\}| \\
& =\sum_{d \mid n}\left|C_{d}\right| \\
& =\sum_{d \mid n} \varphi(n / d) \\
& =\sum_{d \mid n} \varphi(d)
\end{aligned}
$$

where we used the fact the terms of third and fourth sums are rearrangements of each other.

For example, consider $n=10=2 \cdot 5$. The divisors of 10 are $1,2,5$ and 10.
$\varphi(1)=1 \quad \varphi(2)=1 \quad \varphi(5)=4 \quad$ and $\quad \varphi(10)=\varphi(2) \varphi(5)=4$.
As expected

$$
1+1+4+4=10
$$

