You have 80 minutes.

There are 5 problems, and the total number of points is 75. Show all your work. *Please make your work as clear and easy to follow as possible.*

| Name: |
| Signature: |
| Student ID #: |
| Section Time: |

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>75</td>
<td></td>
</tr>
</tbody>
</table>
1. (15pts) (i) *Give the definition of a prime number.*

A natural number p is prime if $p \neq 1$ and the only divisors of p are 1 and p.

(ii) *Give the definition of the greatest common divisor.*

The greatest common divisor d of two numbers a and b, not both zero, has the following properties:

1. $d|a$ and $d|b$.
2. If $d'|a$ and $d'|b$ then $d'|d$.
3. $d > 0$.

(iii) *Give the definition of a group.*

A group G is a set together with a rule of multiplication which satisfies the following rules:

1. Multiplication is associative, that is, $a(bc) = (ab)c$ for all a, b and $c \in G$.
2. There is an identity $e \in G$ such that $ae = a = ea$.
3. Every element $a \in G$ has an inverse b such that $ab = e = ba$.

2. (10pts) Show that if \(M_n = 2^n - 1 \) then \(M_{rn} \) is not prime if \(r > 1 \) and \(n > 1 \).

It is straightforward to check the identity
\[
a^s - b^s = (a - b)(a^{s-1} + a^{s-2}b + a^{s-3}b^2 + \cdots + b^{s-1}).
\]
If we put \(a = 2^r \) and \(b = 1 \) then we get
\[
M_n = 2^n - 1 \\
= (2^r)^s - 1^s \\
= a^s - b^s \\
= (a - b)(a^{s-1} + a^{s-2}b + a^{s-3}b^2 + \cdots + b^{s-1}) \\
= (2^r - 1)k \\
= kM_r.
\]
Thus \(M_r \) divides \(M_n \). As \(r > 1 \), \(M_r > 1 \) and as \(n > 1 \), \(M_r \not= M_n \). Thus \(M_n \) is not a Mersenne prime.
3. (20pts) (i) Show that if \(p = 6k + r \) is prime and \(0 \leq r < 6 \) then either \(p = 2 \) or \(p = 3 \) or \(r = 1 \) or \(r = 5 \).

As \(0 \leq r < 6 \) it follows that \(r = 0, 1, 2, 3, 4 \) or \(5 \). If \(r = 0 \), or \(r = 2 \) or \(4 \) then \(p = 2(3k) \) or \(p = 2(3k + 1) \) or \(p = 2(3k + 2) \) and \(p \) is even. In this case \(p = 2 \). If \(r = 3 \) then \(p = 3(2k + 1) \) is divisible by \(3 \) and \(p = 3 \). Otherwise \(r = 1 \) or \(r = 5 \).

(ii) Show that the set
\[
S = \{ 6k + 1 \mid k \in \mathbb{N} \}
\]
is closed under multiplication.

Suppose that \(a \) and \(b \in S \). Then we may find \(k \) and \(l \) such that \(a = 6k + 1 \) and \(b = 6l + 1 \). In this case
\[
ab = (6k + 1)(6l + 1)
= 36kl + 6k + 6l + 1
= 6(6kl + k + l) + 1.
\]
Thus \(ab \in S \) and \(S \) is closed under multiplication.
(iii) Show that there are infinitely many primes of the form $6k + 5$.

We use a variation of Euclid’s argument. First note that 5 is a prime of the form $6k + 5$. Suppose that there are only finitely many primes, p_1, p_2, \ldots, p_k, whose remainder is five when divided by 6.

Let $P = \prod_{i=1}^{k} p_i$.

Note that

$$6P - 1 = 6(P - 1) + 5,$$

has remainder 5 when divided by 6. Consider the prime factorisation of $6P - 1$. As S is closed under multiplication and $6P - 1 \notin S$ it follows that one of the primes in the factorisation has a remainder different from one, after division by 6.

On the other hand, $6P - 1$ not divisible by 2, 3, or any of the primes p_1, p_2, \ldots, p_k, a contradiction. Therefore there are infinitely many primes of the form $6k + 5$.
4. (10pts) (i) State the fundamental theorem of arithmetic.

If a is a non-zero integer then a is uniquely a product

$$a = \pm 1 \cdot p_1 \cdot p_2 \ldots p_k,$$

where $p_i \leq p_{i+1}$ are primes.

(ii) Suppose that a, b and c are three integers. Show that if $b|a$, $c|a$ and $(b, c) = 1$ then $bc|a$.

We may find common prime factorisations

$$a = p_1^{e_1} p_2^{e_2} \ldots p_i^{e_i} \quad b = p_1^{f_1} p_2^{f_2} \ldots p_i^{f_i} \quad \text{and} \quad c = p_1^{g_1} p_2^{g_2} \ldots p_i^{g_i}.$$

As b and c are coprime, it follows that $f_i g_i = 0$ for all i. As $b|a$ it follows that $f_i \leq e_i$. As $c|a$ it follows that $g_i \leq e_i$. But then $f_i + g_i + i \leq e_i$, since one of f_i and g_i is zero. Thus

$$bc = p_1^{f_1+g_1} p_2^{f_2+g_2} \ldots p_i^{f_i+g_i}$$

divides a.
5. (20pts) (i) Show that if \(a\) and \(b\) are integers, not both zero, and \(d\) is the greatest common divisor, then we may find integers \(\lambda\) and \(\mu\) such that \(d = \lambda a + \mu b\).

If \(a = 0\) then
\[
d = b = 1 \cdot 0 + 1 \cdot b = 1 \cdot a + 1 \cdot b,
\]
so that we may take \(\lambda = \mu = 1\) if \(ab = 0\). Note that
\[
d = (a, b) = (|a|, |b|).
\]

If \(d = \lambda |a| + \mu |b|\) then \(d = (\pm \lambda) a + (\pm \mu) b\). Thus we may assume that \(a\) and \(b > 0\). We may assume that \(a \leq b\). If we divide \(a\) into \(b\) we get
\[
b = qa + r \quad \text{where} \quad 0 \leq r < a.
\]
Note that \(\{a, b\}\) and \(\{a, r\}\) have the same common divisors, so that
\[
d = (a, r).
\]
By induction on \(a\) we may find integers \(\lambda\) and \(\mu\) such that
\[
d = \lambda a + \mu r.
\]
As
\[
r = b - qa,
\]
it follows that
\[
d = \lambda a + \mu r = \lambda a + \mu (b - qa) = (\lambda - \mu q) a + \mu b.
\]
This completes the induction and the proof.
(ii) Show that if p is a prime and $p|ab$ then either $p|a$ or $p|b$.

If $p|a$ there is nothing to prove and so we may assume that p does not divide a. As the only divisors of p are 1 and p and p does not divide a, it follows that the only common divisor of p and a is 1. Thus the greatest common divisor of p and a is 1. By (i) we may find λ and μ such that

$$1 = \lambda p + \mu a.$$

If we multiply both sides of this equation by b then we get

$$b = \lambda pb + \mu ab.$$

The first term is clearly divisible by p and the second term is divisible by p by assumption. Thus $p|b$.

Bonus Challenge Problems
6. (10pts) Show that every positive integer can be represented uniquely in the form
\[F_{n_1} + F_{n_2} + \cdots + F_{n_m}, \]
where \(m \geq 1 \), \(n_{j-1} > n_j + 1 \), for \(j = 2, 3, \ldots, m \) and \(n_m > 1 \).

We first prove existence. We proceed by induction on \(n \). If \(n = 1 \) then we may take \(m = 1 \) and \(n_m = 2 \); in this case \(1 = F_2 \).

Suppose the result is true for all integers up to \(n \). Let \(n_1 \) be the largest integer such that \(n + 1 - F_{n_1} \geq 0 \). Note that \(n_1 \geq 2 \). If \(n + 1 = F_{n_1} \) then we are done. Otherwise, by induction we may find an expression of the form
\[n + 1 - F_{n_1} = F_{n_2} + F_{n_3} + \cdots + F_{n_m}, \]
where \(m \geq 2 \), \(n_{j-1} > n_j + 1 \), for \(3 \leq j \leq m \) and \(n_m \geq 2 \).

If \(n_1 = n_2 + 1 \) then
\[n + 1 \geq F_{n_1} + F_{n_1-1} = F_{n_1+1}, \]
which contradicts our choice of \(n_1 \). Thus \(n_1 > n_2 + 1 \). This completes the induction and the proof of existence.

Now we turn to uniqueness. We first establish that
\[F_n > \sum_{m:1 < m < n} F_m \]
where the sum ranges over those integers such that \(n - m \) is odd. By induction on \(n \).

If \(n = 1 \) then there are no integers \(1 < m < 1 = n \). Thus the result is true for \(n = 1 \) for vacuous reasons. Now suppose the result is true for \(n \).

\[F_{n+1} = F_n + F_{n-1} \]
\[> F_n + \sum_{m:1 < m < n-1} F_m \]
\[= \sum_{m:1 < m < n+1} F_m. \]

Here all but the last sum run over integers \(m \) such that \(n - 1 - m \) is odd and the last one runs over integers \(m \) such that \(n + 1 - m \) is odd. Of course both of these parity conditions are the same. Since \(n + 1 - n = 1 \) is odd, the last sum includes the index \(m = n \).
Suppose that we have two expressions of the form

\[F_{p_1} + F_{p_2} + \cdots + F_{p_m} = F_{q_1} + F_{q_2} + \cdots + F_{q_n}, \]

where \(m \) and \(n \) ≥ 1, \(p_m \) and \(q_n \) > 1, \(p_{i-1} \geq p_i + 2 \) and \(q_{j-1} \geq q_j + 2 \).

If there are two indices \(i \) and \(j \) such that \(p_i = q_j \) then we may cancel \(F_{p_i} \) and \(F_{q_j} \) from both sides. Thus we may that there are no common terms. Possibly switching the sides of the equation, we may assume that \(p_1 > q_1 \).

\[
F_{p_1} > \sum_{m: 1 < m < p_1} F_m \\
\geq F_{q_1} + F_{q_2} + \cdots + F_{q_n},
\]

a contradiction. This proves uniqueness.
7. (10pts) If n is a natural number then let
\[p(n) = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots + \frac{1}{n}. \]
Show that if $p(n)$ is an integer then $n = 1$.

Let
\[p(n) = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots + \frac{1}{n}. \]
Let k be the largest integer such that $2^k \leq n$. Note that no other natural number between 1 and n is divisible by 2^k. Thus if we multiply both sides by 2^{k-1} every term
\[\frac{2^{k-1}}{i} \quad \text{for} \quad 1 \leq i \leq n, \quad i \neq 2^k, \]
of the sum has an odd denominator.
As the sum of rational numbers with an odd denominator, has an odd denominator, it follows that $2^{k-1}p(n)$ is a sum of $1/2$ and a rational number an with odd denominator. In particular $p(n)$ is not an integer.