SECOND MIDTERM
 MATH 104A, UCSD, AUTUMN 17

You have 80 minutes.

There are 6 problems, and the total number of points is 70 . Show all your work. Please make your work as clear and easy to follow as possible.

Name: \qquad
Signature: \qquad
Student ID \#: \qquad
Section Time: \qquad

Problem	Points	Score
1	15	
2	10	
3	10	
4	15	
5	10	
6	10	
7	10	
8	10	
Total	70	

1. (15pts) (i) Give the definition of a congruent to b modulo m.

Two integers a and b are congruent modulo the natural number m if $a-b$ is divisible by m.
(ii) Give the definition of a complete residue system.

A complete residue system modulo a natural number m is a set of integers S such that every integer is congruent to exactly one element of S modulo m.
(iii) Give the definition of a multiplicative function.

A function $f: \mathbb{N} \longrightarrow \mathbb{N}$ is multiplicative if $f(m n)=f(m) f(n)$ whenever m and n are coprime.
2. (10pts) Find all solutions of $19 x+20 y=1909$ in natural numbers x and y.

We first find x and y such that

$$
19 x+20 y=1
$$

This is easy, take $y=1$ and $x=-1$. Now multiply by 1909 to get a pair of integer solutions $(-1909,1909)$ to the equation $19 x+20 y=1909$. As 19 and 20 are coprime, any integer solution (x, y) to this equation is of the form $(20 t-1909,1909-19 t)$.
The condition that the first coordinate is positive means that

$$
20 t>1909 \quad \text { so that } \quad t>95 .
$$

The condition that the second coordinate is positive means that

$$
19 t<1909 \quad \text { so that } \quad t<101 .
$$

Thus the possible values of t are 96, 97, 98, 99 and 100. The possible values of (x, y) are then

$$
(11,85), \quad(31,66), \quad(51,47), \quad(71,28), \quad \text { and } \quad(91,9) .
$$

3. (10pts) Show that if g and m are natural numbers then there are integers a and b, not both zero, such that $(a, b)=g$ and $[a, b]=m$ if and only if $g \mid m$.

Suppose that $g \mid m$. Then take $a=g$ and $b=m$. $g \mid a$ and $g \mid b$ so that g is common divisor. If $d \mid a$ and $d \mid b$ is a common divisor then $d \mid g$. Thus $g=(a, b)$ is the greatest common divisor.
$a \mid m$ and $b \mid m$ so that m is a common multiple. If $a \mid l$ and $b \mid l$ then $m \mid l$ so that $m=[a, b]$ is the least common multiple.
Now suppose that $(a, b)=g$ and $[a, b]=m$. We may suppose that a is non-zero. As g is A common divisor, $g \mid a$. As m is a common multiple, $a \mid m$. Thus $g \mid m$.
4. (15pts) Show that if r and s are odd then
(i)

$$
\frac{r s-1}{2}=\frac{r-1}{2}+\frac{s-1}{2} \bmod 2
$$

As r and s are odd, there are integers a and b such that $r=2 a+1$ and $s=2 b+1$. Therefore

$$
\begin{aligned}
\frac{r s-1}{2} & =\frac{(2 a+1)(2 b+1)-1}{2} \\
& =\frac{4 a b+2 a+2 b}{2} \\
& =2 a b+a+b \\
& =a+b \bmod 2 \\
& =\frac{r-1}{2}+\frac{s-1}{2} .
\end{aligned}
$$

(ii) $r^{2} \equiv 1 \bmod 8$.

Note that $a(a+1)$ is even, so that $4 a(a+1)$ is divisible by 8 . Therefore

$$
\begin{aligned}
r^{2} & =(2 a+1)^{2} \\
& =4 a^{2}+4 a+1 \\
& =4 a(a+1)+1 \\
& \equiv 1 \quad \bmod 8 .
\end{aligned}
$$

(iii)

$$
\frac{r^{2} s^{2}-1}{8} \equiv \frac{r^{2}-1}{8}+\frac{s^{2}-1}{8} \bmod 8
$$

We have

$$
\begin{aligned}
\frac{r^{2} s^{2}-1}{8} & =\frac{(2 a+1)^{2}(2 b+1)^{2}-1}{8} \\
& =\frac{\left(4 a^{2}+4 a+1\right)\left(4 b^{2}+b 4+1\right)-1}{8} \\
& =\frac{16 a(a+1) b(b+1)+4 a^{2}+4 a+4 b^{2}+4 b+1-1}{8} \\
& =2 a(a+1) b(b+1)+\frac{a(a+1)+b(b+1)}{2} \\
& \equiv \frac{a(a+1)+b(b+1)}{2} \bmod 8 \\
& =\frac{4 a(a+1)+4 b(b+1)}{8} \\
& =\frac{r^{2}-1}{8}+\frac{s^{2}-1}{8} .
\end{aligned}
$$

5. (10pts) If p is a prime number then show that

$$
(a+b)^{p} \equiv a^{p}+b^{p} \quad \bmod p,
$$

for all integers a and b.

Note that

$$
\binom{p}{i}=\frac{p!}{i!(p-i)!}
$$

is divisible by p for all $0<i<p$, since the denominator is a product of natural numbers less than p. Thus

$$
\binom{p}{i} \equiv 0 \quad \bmod p .
$$

Applying the binomial theorem we have

$$
\begin{aligned}
(a+b)^{p} & =a^{p}+\binom{p}{1} a^{p-1} b+\binom{p}{2} a^{p-2} b^{2}+\ldots\binom{p}{i} a^{p-i} b^{i}+\cdots+\binom{p}{p-1} a b^{p-1}+\binom{p}{p} b^{p} \\
& \equiv a^{p}+b^{p} \bmod p
\end{aligned}
$$

6. (10pts) Show that if $d \mid n$ then $\varphi(d) \mid \varphi(n)$.

As both φ is multiplicative, we may assume that n is a power of a prime, $n=p^{e}$, where e is a non-negative integer. If $n=1$ then $d=1$ and the result is clear. Thus we may assume that e is a natural number. As d divides n we have $d=p^{f}$, for some non-negative integer f. In this case
$\varphi(n)=p^{e}-p^{e-1}=(p-1) p^{e-1} \quad$ and $\quad \varphi(d)=p^{f}-p^{f-1}=(p-1) p^{f-1}$ and the result is clear.

Bonus Challenge Problems

7. (10pts) Show that the Euler φ-function is multiplicative.

Suppose that $m=1$. Then $m n=1 \cdot n=n$ so that

$$
\begin{aligned}
\phi(m) \phi(n) & =\phi(1) \phi(n) \\
& =\phi(n) \\
& =\phi(1 \cdot n) \\
& =\phi(m n) .
\end{aligned}
$$

Thus the result holds if $m=1$. Similarly the result holds if $n=1$. Thus we may assume that m and $n>1$. Consider the array

0	1	2	\cdots	$m-1$
m	$m+1$	$m+2$	\cdots	$m+(m-1)$
\vdots	\vdots	\vdots	\ddots	\vdots
$(n-1) m$	$(n-1) m+1$	$(n-1) m+2$	\cdots	$(n-1) m+(m-1)$.

The last entry is $n m-1$ and so this is a complete residue system, modulo $m n$. Therefore $\varphi(m n)$ is the number of elements of the array comprime to $m n$.
Pick a column and suppose the first entry is a. The other entries in that column are $m+a, 2 m+a, \ldots,(n-1) m+a$ and so every entry in that column is congruent to a modulo m. So if a is not coprime to m then no entry in that column is coprime to m, let alone $m n$. Thus we can focus on those columns whose first entry a is coprime to a.
The first row is a complete residue system modulo m, so that $\varphi(m)$ elements of the first row are coprime to m. Thus there are only $\varphi(m)$ columns we need to focus on. On the other hand, the entries in this column are the numbers $m \cdot 1+a, m \cdot 2+a, m \cdot 3+a$, and so they are a complete residue system modulo n. Thus $\varphi(n)$ elements of this column are coprime to n.
Thus $\varphi(m) \varphi(n)$ elements of the array are coprime to both m and n. But as m and n are coprime, it follows that an integer l is coprime to $m n$ if and only if it is coprime to m and n. Thus $\varphi(m) \varphi(n)$ elements of the array are coprime to $m n$.
8. (10pts) Fix a natural number k. Show that there are arbitrarily long blocks of consecutive integers, all of which are divisible by the kth power of a natural number bigger than one.

Let $p_{1}, p_{2}, \ldots, p_{r}$ be distinct primes, for example

$$
2,3,5, \ldots, p_{r}
$$

Let $m_{i}=p_{i}^{k}$. Then

$$
m_{1}, m_{2}, \ldots, m_{r}
$$

are pairwise coprime. Let

$$
c_{i}=m_{i}-i-1
$$

so that

$$
\begin{array}{rlr}
c_{1} & \equiv 0 & \bmod m_{1} \\
c_{2} & \equiv-1 & \bmod m_{2} \\
c_{3} & \equiv-2 & \bmod m_{3} \\
\vdots & \ddots & \vdots \\
c_{r} & \equiv-r+1 & \bmod m_{r} .
\end{array}
$$

Then, by the Chinese remainder theorem, we can find a natural number x congruent to c_{i}, modulo m_{i}, for every $1 \leq i \leq r$. Note that

$$
x \equiv 0 \quad \bmod m_{1},
$$

so that $m_{1}=p_{1}^{k}$ divides x. Thus x is divisible by a k th power. But

$$
x+1 \equiv 0 \quad \bmod m_{2}
$$

so that p_{2}^{k} divides $x+1$. Thus $x+1$ is divisible by a k th power. In general

$$
x+(i-1) \equiv 0 \quad \bmod m_{i}
$$

so that p_{i}^{k} divides $x+i=1$. Thus $x+i-1$ is divisible by a k th power. It follows that every one of the r consecutive integers

$$
x, \quad x+1, \quad x+2, \quad \ldots \quad x+r-1
$$

is divisible by a k th power.

