MODEL ANSWERS TO THE FIRST HOMEWORK

1.1.1 It is straightforward to check the identity
\[a^s - b^s = (a - b)(a^{s-1} + a^{s-2}b + a^{s-3}b^2 + \cdots + b^{s-1}). \]
If we put \(a = 2^r \) and \(b = 1 \) then we get
\[
M_n = 2^n - 1 \\
= (2^r)^s - 1^s \\
= a^s - b^s \\
= (a - b)(a^{s-1} + a^{s-2}b + a^{s-3}b^2 + \cdots + b^{s-1}) \\
= (2^r - 1)k \\
= kM_r.
\]
Thus \(M_r \) divides \(M_n \).

1.3.1 (i) As \(0 = 0 \cdot a, \ a = 1 \cdot a \) and \(a = \pm 1 \cdot \pm a \).

It follows that
\[a|0, \ a|a \] and \(\pm|a \).

(ii) As \(a|b \) we may find \(k \) such that \(b = ka \) and as \(b|c \) we may find \(l \) so that \(c = lb \). Thus
\[
c = lb \\
= l(ka)b \\
= kl(ab).
\]
Thus \(b|c \).

(iii) As \(a|b \) we may find \(k \) such that \(b = ka \) and as \(a|c \) we may find \(l \) so that \(c = la \). Thus
\[
bx + cy = (ka)x + (la)y \\
= (kx + ly)a.
\]
Thus \(a|(bx + cy) \).

1.3.3. (a) It is expedient to extend the Fibonacci sequence by starting at 0 with 0,
\[0, 1, 1, 2, 3, \ldots. \]
Let \(P(m, n) \) be the statement that
\[F_{m+n+1} = F_m F_n + F_{m+1} F_{n+1}. \]
We prove this by induction on m and n.
We first check that $P(0, 0)$, $P(1, 0)$, $P(0, 1)$ and $P(1, 1)$ all hold.
When $m = n = 0$ the LHS of the equation is
$$F_{m+n+1} = F_{0+0+1} = F_1 = 1$$
and the RHS of the equation is
$$F_m F_n + F_{m+1} F_{n+1} = F_0 F_0 + F_1 F_1 = 0 + 1 = 1.$$
As both sides are equal, $P(0, 0)$ holds.
When $m = 1$ and $n = 0$, the LHS of the equation is
$$F_{m+n+1} = F_{1+0+1} = F_2 = 1$$
and the RHS of the equation is
$$F_m F_n + F_{m+1} F_{n+1} = F_1 F_0 + F_2 F_1 = 0 + 1 = 1.$$
As both sides are equal, $P(1, 0)$ holds. By symmetry, $P(0, 1)$ also holds.
When $m = 1$ and $n = 1$, the LHS of the equation is
$$F_{m+n+1} = F_{1+1+1} = F_3 = 2,$$
and the RHS of the equation is
$$F_m F_n + F_{m+1} F_{n+1} = F_1 F_1 + F_2 F_2 = 1 + 1 = 2.$$
As both sides are equal, $P(1, 1)$ holds.
Thus $P(0, 0)$, $P(1, 0)$, $P(0, 1)$ and $P(1, 1)$ all hold.
Now assume that $P(i, j)$ holds for all $i \leq p$ and $j \leq q$. Suppose that $p \geq 1$. Let us show that $P(p + 1, q)$ holds. We have
$$F_{p+q+2} = F_{p+q} + F_{p+q+1}$$
$$= F_{p-1} F_q + F_p F_{q+1} + F_p F_q + F_{p+1} F_{q+1}$$
$$= F_{p-1} F_q + F_p F_q + F_p F_{q+1} + F_{p+1} F_{q+1}$$
$$= (F_{p-1} + F_p) F_q + (F_p + F_{p+1}) F_{q+1}$$
$$= F_{p+1} F_q + F_{p+2} F_{q+1},$$
where we used the recursive definition of the Fibonacci numbers for the first line, the inductive hypotheses $P(p-1, q)$ and $P(p, q)$ to get from the first line to the second line, and the recursive definition of the Fibonacci numbers to get from the fourth line to the fifth line.
Therefore $P(p + 1, q)$ holds. We have shown that $P(i, j)$ for all $i \leq p$ and $j \leq q$ implies $P(p+1, q)$. By symmetry, it follows that we can also deduce $P(p, q + 1)$ using the same hypotheses.
This completes the induction and the proof.
(b) Fix \(r \). We prove that \(F_n \) divides \(F_{rn} \) by induction on \(n \). The case \(n = 1 \) is clear as \(F_1 = 1 \) and 1 divides everything. Suppose that the result is true for \(n \). By (a) we have

\[
F_{(r+1)n} = F_{rn}F_{n-1} + F_{(rn-1)}F_n.
\]

As the first term is divisible by \(F_n \) by induction and the second term is visibly divisible by \(F_n \), it follows that \(F_{(r+1)n} \) is divisible by \(F_n \) by 1.3.1. This completes the induction and so \(F_n \) divides \(F_{rn} \) for all \(r \) and \(n \).

1.3.4.

\[
\alpha > \beta = \frac{1 + \sqrt{5}}{2}.
\]

We proceed by induction on \(n \). For \(n = 0 \) we have

\[
F_0 = 0 < 1 = \alpha^n.
\]

For \(n = 1 \), we have

\[
F_1 = 1 < \beta < \alpha = \alpha^n.
\]

Thus the result is true for \(n = 0 \) and \(n = 1 \).

Let \(f(x) = x^2 - x - 1 \). As \(f'(x) = 2x - 1 \), \(f(x) \) is increasing for \(x \geq 1/2 \).

As \(f(\beta) = 0 \) it follows that \(f(\alpha) > 0 \), so that

\[
(1 + \alpha) < \alpha^2.
\]

Now suppose the result is true for all integers up to \(n \), where \(n \geq 2 \). We have

\[
F_{n+1} = F_n + F_{n-1} < \alpha^n + \alpha^{n-1} = \alpha^{n-1}(\alpha + 1) < \alpha^{n-1}(\alpha^2) = \alpha^{n+1}.
\]

This completes the induction and the proof.

1.4.3 (a) By induction on \(n \). Note that the sum ranges over those indices \(m = n - 2k - 1 \) such that \(1 < m < n \) and \(n - m \) is odd.

If \(n = 1 \) then there are no integers \(1 < m < 1 = n \). Thus the result is true for \(n = 1 \) for vacuous reasons.

Now suppose the result is true for \(n \).
\[F_{n+1} = F_n + F_{n-1} \]
\[> F_n + \sum_{m:1<m<n-1} F_m \]
\[= \sum_{m:1<m<n+1} F_m. \]

Here all but the last sum run over integers \(m \) such that \(n-1-m \) is odd and the last one runs over integers \(m \) such that \(n+1-m \) is odd. Of course both of these parity conditions are the same. Since \(n+1-n = 1 \) is odd, the last sum includes the index \(m = n \).

(b) We first prove existence. We proceed by induction on \(n \). If \(n = 1 \) then we may take \(m = 1 \) and \(n_m = 2 \); in this case \(1 = F_2 \).

Suppose the result is true for all integers up to \(n \). Let \(n_1 \) be the largest integer such that \(n+1-F_{n_1} \geq 0 \). Note that \(n_1 \geq 2 \). If \(n+1 = F_{n_1} \) then we are done. Otherwise, by induction we may find an expression of the form
\[n+1-F_{n_1} = F_{n_2} + F_{n_3} + \cdots + F_{n_m}, \]
where \(m \geq 2 \), \(n_{j-1} > n_j + 1 \), for \(3 \leq j \leq m \) and \(n_m \geq 2 \).

If \(n_1 = n_2 + 1 \) then
\[n+1 \geq F_{n_1} + F_{n_1-1} \]
\[= F_{n_1+1}, \]
which contradicts our choice of \(n_1 \). Thus \(n_1 > n_2 + 1 \). This completes the induction and the proof of existence.

Now we turn to uniqueness. Suppose that we have two expressions of the form
\[F_{p_1} + F_{p_2} + \cdots + F_{p_m} = F_{q_1} + F_{q_2} + \cdots + F_{q_n}, \]
where \(m \) and \(n \geq 1 \), \(p_m \) and \(q_n \) are integers, \(p_i-1 \geq p_1 + 2 \) and \(q_j-1 \geq q_j + 2 \). If there are two indices \(i \) and \(j \) such that \(p_i = q_j \) then we may cancel \(F_{p_i} \) and \(F_{q_j} \) from both sides. Thus we may that there are no common terms. Possibly switching the sides of the equation, we may assume that \(p_1 > q_1 \). By (a) we have that
\[F_{p_1} > \sum_{m:1<m<p_1} F_m \]
\[\geq F_{q_1} + F_{q_2} + \cdots + F_{q_n}, \]
a contradiction. This proves uniqueness.

1.4.4 (a) Consider numbers of the form \(6k + r \), \(0 \leq r \leq 5 \). There are six possibilities for \(r \), 0, 1, 2, 3, 4 and 5. If \(r = 0 \), 2 or 4 then \(6k + r \)
is even. If \(r = 0 \) or \(3 \) then \(6k + r \) is divisible by \(3 \). Thus if \(6k + r \) is a prime, not equal to either \(2 \) or \(3 \), then \(r = 1 \) or \(r = 5 \).

(b) We have

\[
(6k + 1)(6l + 1) = 36kl + 6k + 6l + 1
\]

\[
= 6(6kl + k + 1) + 1.
\]

Thus the set \(\{ 6k + 1 \mid k \in \mathbb{Z}, k \geq 0 \} \) is closed under multiplication.

(c) Note that \(5 = 6 \cdot 0 + 5 \) is a prime of the form \(6k + 5 \). Suppose that there are only finitely many natural numbers \(k_1, k_2, \ldots, k_a \) such that \(p_i = 6k_i - 1 = 6(k_i - 1) + 5 \) is a prime number. Let

\[
N = 6 \prod_{i=1}^{a} p_i - 1.
\]

Note that \(N = 6k + 5 \), where

\[
k = \prod_{i=1}^{a} p_i - 1.
\]

Consider the prime factors of \(N \). Primes of the form \(6k + 1 \) are closed under multiplication, so that \(N \) has at least one prime factor which is not of the form \(6k+1 \). Neither \(2 \) nor \(3 \) is a prime factor, by construction. Similarly none of the primes \(p_1, p_2, \ldots, p_a \) are factors of \(N \). This is a contradiction. Thus there are infinitely many primes of the form \(6k+5 \).

(d) Take \(b = 4 \). Any odd prime is of the form \(4k+1 \) or \(4k+3 \). Numbers of the form \(4k+1 \) are closed under multiplication. \(3 = 4 \cdot 0 + 3 \) is a prime of the form \(4k + 3 \). Arguing as in (c) it follows that there are infinitely many primes of the form \(4k + 3 \).

1.4.9. Suppose that \(N = ab \) is odd, where \(a \) and \(b \) are natural numbers. Possibly swapping \(a \) and \(b \) we may assume that \(a > b \). As \(n \) is odd, \(a \) and \(b \) are odd so that both \(a + b \) and \(b - a \) are even. We may find natural numbers \(x \) and \(y \) such that \(2x = a + b \) and \(2y = a - b \).

In this case \(2(x + y) = 2a \) and \(2(x - y) = 2b \), so that \(a = x + y \) and \(b = x - y \). But then

\[
N = ab
\]

\[
= (x + y)(x - y)
\]

\[
= x^2 - y^2.
\]

Now \(N = N \cdot 1 \) so that there is always at least one way to write \(N \) as a difference of two squares. It follows that \(N \) is an odd prime if and only if there is exactly one way to write \(N \) as a difference of two squares.