MODEL ANSWERS TO THE FIRST HOMEWORK

1.1.1 It is straightforward to check the identity

$$
a^{s}-b^{s}=(a-b)\left(a^{s-1}+a^{s-2} b+a^{s-3} b^{2}+\cdots+b^{s-1}\right) .
$$

If we put $a=2^{r}$ and $b=1$ then we get

$$
\begin{aligned}
M_{n} & =2^{n}-1 \\
& =\left(2^{r}\right)^{s}-1^{s} \\
& =a^{s}-b^{s} \\
& =(a-b)\left(a^{s-1}+a^{s-2} b+a^{s-3} b^{2}+\cdots+b^{s-1}\right) \\
& =\left(2^{r}-1\right) k \\
& =k M_{r} .
\end{aligned}
$$

Thus M_{r} divides M_{n}.
1.3.1 (i) As

$$
0=0 \cdot a, \quad a=1 \cdot a \quad \text { and } \quad a= \pm 1 \cdot \pm a
$$

it follows that

$$
a|0, \quad a| a \quad \text { and } \quad \pm 1 \mid a
$$

(ii) As $a \mid b$ we may find k such that $b=k a$ and as $b \mid c$ we may find l so that $c=l b$. Thus

$$
\begin{aligned}
c & =l b \\
& =l(k a) b \\
& =k l(a b) .
\end{aligned}
$$

Thus $b \mid c$.
(iii) As $a \mid b$ we may find k such that $b=k a$ and as $a \mid c$ we may find l so that $c=l a$. Thus

$$
\begin{aligned}
b x+c y & =(k a) x+(l a) y \\
& =(k x+l y) a .
\end{aligned}
$$

Thus $a \mid(b x+c y)$.
1.3.3. (a) It is expedient to extend the Fibonacci sequence by starting at 0 with 0 ,

$$
0,1,1,2,3, \ldots
$$

Let $P(m, n)$ be the statement that

$$
F_{m+n+1}=\underset{m}{F_{m}} F_{n}+F_{m+1} F_{n+1} .
$$

We prove this by induction on m and n.
We first check that $P(0,0), P(1,0), P(0,1)$ and $P(1,1)$ all hold.
When $m=n=0$ the LHS of the equation is

$$
F_{m+n+1}=F_{0+0+1}=F_{1}=1
$$

and the RHS of the equation is

$$
F_{m} F_{n}+F_{m+1} F_{n+1}=F_{0} F_{0}+F_{1} F_{1}=0+1=1 .
$$

As both sides are equal, $P(0,0)$ holds.
When $m=1$ and $n=0$, the LHS of the equation is

$$
F_{m+n+1}=F_{1+0+1}=F_{2}=1
$$

and the RHS of the equation is

$$
F_{m} F_{n}+F_{m+1} F_{n+1}=F_{1} F_{0}+F_{2} F_{1}=0+1=1 .
$$

As both sides are equal, $P(1,0)$ holds. By symmetry, $P(0,1)$ also holds. When $m=1$ and $n=1$, the LHS of the equation is

$$
F_{m+n+1}=F_{1+1+1}=F_{3}=2,
$$

and the RHS of the equation is

$$
F_{m} F_{n}+F_{m+1} F_{n+1}=F_{1} F_{1}+F_{2} F_{2}=1+1=2
$$

As both sides are equal, $P(1,1)$ holds.
Thus $P(0,0), P(1,0), P(0,1)$ and $P(1,1)$ all hold.
Now assume that $P(i, j)$ holds for all $i \leq p$ and $j \leq q$. Suppose that $p \geq 1$. Let us show that $P(p+1, q)$ holds. We have

$$
\begin{aligned}
F_{p+q+2} & =F_{p+q}+F_{p+q+1} \\
& =F_{p-1} F_{q}+F_{p} F_{q+1}+F_{p} F_{q}+F_{p+1} F_{q+1} \\
& =F_{p-1} F_{q}+F_{p} F_{q}+F_{p} F_{q+1}+F_{p+1} F_{q+1} \\
& =\left(F_{p-1}+F_{p}\right) F_{q}+\left(F_{p}+F_{p+1}\right) F_{q+1} \\
& =F_{p+1} F_{q}+F_{p+2} F_{q+1},
\end{aligned}
$$

where we used the recursive definition of the Fibonacci numbers for the first line, the inductive hypotheses $P(p-1, q)$ and $P(p, q)$ to get from the first line to the second line, and the recursive definition of the Fibonacci numbers to get from the fourth line to the fifth line.
Therefore $P(p+1, q)$ holds. We have shown that $P(i, j)$ for all $i \leq p$ and $j \leq q$ implies $P(p+1, q)$. By symmetry, it follows that we can also deduce $P(p, q+1)$ using the same hypotheses.
This completes the induction and the proof.
(b) Fix r. We prove that F_{n} divides $F_{r n}$ by induction on n. The case $n=1$ is clear as $F_{1}=1$ and 1 divides everything. Suppose that the result is true for n. By (a) we have

$$
F_{(r+1) n}=F_{r n} F_{n-1}+F_{(r n-1)} F_{n} .
$$

As the first term is divisible by F_{n} by induction and the second term is visibly divisible by F_{n}, it follows that $F_{(r+1) n}$ is divisible by F_{n} by 1.3.1. This completes the induction and so F_{n} divides $F_{r n}$ for all r and n.
1.3.4.

$$
\alpha>\beta=\frac{1+\sqrt{5}}{2} .
$$

We proceed by induction on n. For $n=0$ we have

$$
\begin{aligned}
F_{0} & =0 \\
& <1 \quad=\alpha^{n} .
\end{aligned}
$$

For $n=1$, we have

$$
\begin{aligned}
F_{1} & =1 \\
& <\beta \\
& <\alpha \\
& =\alpha^{n} .
\end{aligned}
$$

Thus the result is true for $n=0$ and $n=1$.
Let $f(x)=x^{2}-x-1$. As $f^{\prime}(x)=2 x-1, f(x)$ is increasing for $x \geq 1 / 2$. As $f(\beta)=0$ it follows that $f(\alpha)>0$, so that

$$
(1+\alpha)<\alpha^{2} .
$$

Now suppose the result is true for all integers up to n, where $n \geq 2$. We have

$$
\begin{aligned}
F_{n+1} & =F_{n}+F_{n-1} \\
& <\alpha^{n}+\alpha^{n-1} \\
& =\alpha^{n-1}(\alpha+1) \\
& <\alpha^{n-1}\left(\alpha^{2}\right) \\
& =\alpha^{n+1} .
\end{aligned}
$$

This completes the induction and the proof.
1.4.3 (a) By induction on n. Note that the sum ranges over those indices $m=n-2 k-1$ such that $1<m<n$ and $n-m$ is odd.
If $n=1$ then there are no integers $1<m<1=n$. Thus the result is true for $n=1$ for vacuous reasons.
Now suppose the result is true for n.

$$
\begin{aligned}
F_{n+1} & =F_{n}+F_{n-1} \\
& >F_{n}+\sum_{m: 1<m<n-1} F_{m} \\
& =\sum_{m: 1<m<n+1} F_{m} .
\end{aligned}
$$

Here all but the last sum run over integers m such that $n-1-m$ is odd and the last one runs over integers m such that $n+1-m$ is odd. Of course both of these parity conditions are the same. Since $n+1-n=1$ is odd, the last sum includes the index $m=n$.
(b) We first prove existence. We proceed by induction on n. If $n=1$ then we may take $m=1$ and $n_{m}=2$; in this case $1=F_{2}$.
Suppose the result is true for all integers up to n. Let n_{1} be the largest integer such that $n+1-F_{n_{1}} \geq 0$. Note that $n_{1} \geq 2$. If $n+1=F_{n_{1}}$ then we are done. Otherwise, by induction we may find an expression of the form

$$
n+1-F_{n_{1}}=F_{n_{2}}+F_{n_{3}}+\cdots+F_{n_{m}},
$$

where $m \geq 2, n_{j-1}>n_{j}+1$, for $3 \leq j \leq m$ and $n_{m} \geq 2$. If $n_{1}=n_{2}+1$ then

$$
\begin{aligned}
n+1 & \geq F_{n_{1}}+F_{n_{1}-1} \\
& =F_{n_{1}+1},
\end{aligned}
$$

which contradicts our choice of n_{1}. Thus $n_{1}>n_{2}+1$. This completes the induction and the proof of existence.
Now we turn to uniqueness. Suppose that we have two expressions of the form

$$
F_{p_{1}}+F_{p_{2}}+\cdots+F_{p_{m}}=F_{q_{1}}+F_{q_{2}}+\cdots+F_{q_{n}},
$$

where m and $n \geq 1, p_{m}$ and $q_{n}>1, p_{i-1} \geq p_{i}+2$ and $q_{j-1} \geq q_{j}+2$. If there are two indices i and j such that $p_{i}=q_{j}$ then we may cancel $F_{p_{i}}$ and $F_{q_{j}}$ from both sides. Thus we may that there are no common terms. Possibly switching the sides of the equation, we may assume that $p_{1}>q_{1}$. By (a) we have that

$$
\begin{aligned}
F_{p_{1}} & >\sum_{m: 1<m<p_{1}} F_{m} \\
& \geq F_{q_{1}}+F_{q_{2}}+\cdots+F_{q_{n}}
\end{aligned}
$$

a contradiction. This proves uniqueness.
1.4.4 (a) Consider numbers of the form $6 k+r, 0 \leq r \leq 5$. There are six possibilities for $r, 0,1,2,3,4$ and 5 . If $r=0,2$ or 4 then $6 k+r$
is even. If $r=0$ or 3 then $6 k+r$ is divisible by 3 . Thus if $6 k+r$ is a prime, not equal to either 2 or 3 , then $r=1$ or $r=5$.
(b) We have

$$
\begin{aligned}
(6 k+1)(6 l+1) & =36 k l+6 k+6 l+1 \\
& =6(6 k l+k+1)+1 .
\end{aligned}
$$

Thus the set

$$
\{6 k+1 \mid k \in \mathbb{Z}, k \geq 0\}
$$

is closed under multiplication.
(c) Note that $5=6 \cdot 0+5$ is a prime of the form $6 k+5$.

Suppose that there are only finitely many natural numbers $k_{1}, k_{2}, \ldots, k_{a}$ such that $p_{i}=6 k_{i}-1=6\left(k_{i}-1\right)+5$ is a prime number. Let

$$
N=6 \prod_{i=1}^{a} p_{i}-1
$$

Note that $N=6 k+5$, where

$$
k=\prod_{i=1}^{a} p_{i}-1 .
$$

Consider the prime factors of N. Primes of the form $6 k+1$ are closed under multiplication, so that N has at least one prime factor which is not of the form $6 k+1$. Neither 2 nor 3 is a prime factor, by construction. Similarly none of the primes $p_{1}, p_{2}, \ldots, p_{a}$ are factors of N. This is a contradiction. Thus there are infinitely many primes of the form $6 k+5$. (d) Take $b=4$. Any odd prime is of the form $4 k+1$ or $4 k+3$. Numbers of the form $4 k+1$ are closed under multiplication. $3=4 \cdot 0+3$ is a prime of the form $4 k+3$. Arguing as in (c) it follows that there are infinitely many primes of the form $4 k+3$.
1.4.9. Suppose that $N=a b$ is odd, where a and b are natural numbers. Possibly swapping a and b we may assume that $a>b$. As n is odd, a and b are odd so that both $a+b$ and $b-a$ are even. We may find natural numbers x and y such that $2 x=a+b$ and $2 y=a-b$.
In this case $2(x+y)=2 a$ and $2(x-y)=2 b$, so that $a=x+y$ and $b=x-y$. But then

$$
\begin{aligned}
N & =a b \\
& =(x+y)(x-y) \\
& =x^{2}-y^{2} .
\end{aligned}
$$

Now $N=N \cdot 1$ so that there is always at least one way to write N as a difference of two squares. It follows that N is an odd prime if and only if there is exactly one way to write N as a difference of two squares.

