MODEL ANSWERS TO THE THIRD HOMEWORK

2.2.1. It is convenient to use polar coordinates. Every complex number $\alpha=x+i y$ has an expression of the form

$$
\alpha=r e^{i \theta}
$$

where r is the distance to the origin and θ is the angle the line, connecting the origin to (x, y), makes with the x-axis. In this case

$$
s(\alpha)=r^{2}
$$

Suppose that we are given two Gaussian integers

$$
\alpha=a+i b=r e^{i \theta} \quad \text { and } \quad \beta=c+i d=s e^{i \phi} .
$$

Then

$$
\begin{aligned}
\alpha \beta & =\left(r e^{i \theta}\right)\left(s e^{i \phi}\right) \\
& =(r s) e^{i(\theta+\phi)} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
s(\alpha \beta) & =r^{2} s^{2} \\
& =s(\alpha) s^{2} \\
& \geq s(\alpha),
\end{aligned}
$$

with equality if and only if $s(\beta)=1$. But $s(\beta)=1$ implies $c^{2}+d^{2}=1$ so that $c= \pm 1$ and $d=0$ or $c=0$ and $d= \pm 1$. In this case

$$
\beta= \pm 1 \quad \text { or } \quad \beta= \pm i
$$

is a unit.
2.2.3. We may suppose that $m>0$. Suppose that $m=a b$ where both $a>1$ and $b>1$ and $a \leq b$. Then

$$
\begin{aligned}
m & =a b \\
& >a^{2}
\end{aligned}
$$

so that $a \leq \sqrt{m}$. Thus if m is not prime it has a divisor $1<d \leq \sqrt{m}$. The Gaussian integers α such that $s(\alpha)=1$ are precisely the units. If $\alpha=a+b i$ is a Gaussian integer then $s(\alpha)=a^{2}+b^{2}$. Thus the possible values of $1<s(\alpha) \leq 9$ are $2=1^{2}+1^{2}, 4=2^{2}+0^{2}, 5=2^{2}+1^{2}$, $8=2^{2}+2^{2}$ and $9=3^{2}+0^{2}$. On the other hand, if α is a non-zero Gaussian integer, then we can always find a unit u such that $u \alpha=c+d i$ lies in the first quadrant, so that $c>0$ and $d \geq 0$.

If $s(\alpha)=2$ then $a= \pm 1$ and $b= \pm 1$. Multiplying by a unit our first prime is $p_{1}=1+i$. $(1+i)(1-i)=2$, so 2 is not prime and neither is $2+2 i=2(1+i)$.
If $s(\alpha)=4$ then $a= \pm 2$ and $b=0$ or vice-versa. We have already seen that 2 is not a prime. If $s(\alpha)=5$ then $a= \pm 2$ and $b= \pm 1$ or vice-versa. This gives us eight possibilities. Of those eight possibilities, two lie in the first quadrant, $2+i$ and $1+2 i$. These are the second $p_{2}=2+i$ and third $p_{3}=1+2 i$ primes up to units. The product of p_{1} with p_{2} or p_{3} has norm squared bigger than nine. If $s(\alpha)=8$ then $a= \pm 2$ and $b= \pm 2$. We have already seen that this is not prime. Finally suppose that $s(\alpha)=9$ then $a= \pm 3$ and $b=0$ or vice-versa. This gives one new prime, up to units, $p_{4}=3$.
Thus there are four primes $\alpha, 2,2+i, 1+2 i$ and 3 , up to units, such that $s(\alpha) \leq 9$.
2.2.5. (a) Suppose that $f(x) \in \mathbb{Z}[x]$ divides both 2 and x. As $f(x)$ divides 2 it must be a constant. Thus $f(x)=a \in \mathbb{Z}$ is an integer. As this integer divides $2, f(x)= \pm 1$ or $f(x)= \pm 2$. It is easy to see that ± 2 does not divide x. Thus the only common divisors of 2 and x are ± 1 and so the greatest common divisor is 1 .
(b) If $\mathbb{Z}[x]$ were a Euclidean domain then we could find polynomials $p(x)$ and $q(x) \in \mathbb{Z}[x]$ such that

$$
1=2 p(x)+x q(x)
$$

As the constant term of $x q(x)$ is zero and the constant term of $2 p(x)$ is even, it follows that the constant term of the RHS is even, a contradiction.
2.2.9. Let

$$
p(n)=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n} .
$$

Let k be the largest integer such that $2^{k} \leq n$. Note that no other natural number between 1 and n is divisible by 2^{k}. Thus if we multiply both sides by 2^{k-1} every term

$$
\frac{2^{k-1}}{i} \quad \text { for } \quad 1 \leq i \leq n, \quad i \neq 2^{k}
$$

of the sum is odd.
As the sum of rational numbers with an odd denominator, has an odd denominator, it follows that $2^{k-1} p(n)$ is a sum of $1 / 2$ and a rational number an with odd denominator. In particular $p(n)$ is not an integer. 2.3.1. We find the greatest common divisor of 2072 and 1813. First we divide 1813 into 2072. We have

$$
2072=1 \cdot 1813+259
$$

so that the quotient is 1 and the remainder is 259 . Now we divide 259 into 1813. We have

$$
1813=7 \cdot 259 .
$$

so that the quotient is 7 and the remainder is 0 . Thus the greatest common divisor is 259 .
Note that

$$
2589=11 \cdot 259
$$

so that we can solve these equations.
Note that

$$
2072-1813=259 .
$$

Multiplying through by 7 gives a solution to the equation

$$
2072 x+1813 y=2849
$$

Thus the general solution is

$$
x=1813 k+7 \quad \text { and } \quad y=-(2072 k+7)
$$

2.3.3 Note that

$$
1=1 \cdot 20-1 \cdot 19 .
$$

Thus

$$
1909=1909 \cdot 20-1909 \cdot 19
$$

We are free to subtract $19 k \cdot 20$ from the first sum and add $20 k \cdot 19$ from the second sum. Thus the general solution to the equation

$$
19 x+20 y=1909 \quad \text { is } \quad x=-1909+20 k, y=1909-19 k .
$$

If we want the first term to be positive we want

$$
20 k>1909,
$$

so that $k \geq 96$. If we want the second term to be positive we want

$$
19 k<1909,
$$

so that $k \leq 100$. The five solutions that lie in the interior of the first quadrant are

$$
(x, y)=(11,85) \quad(31,66) \quad(51,47) \quad(71,28) \quad(91,9) .
$$

2.3.7 We already know that the sum

$$
b y+c z
$$

takes on any multiple of (b, c). Thus

$$
b y+c z=(b, c) \alpha,
$$

for some integer α. It follows that a solution of the equation

$$
\underset{3}{a x+b y+c z=d}
$$

is the same as a solution of the pair of equations

$$
\begin{aligned}
a x+(b, c) u & =d \\
b y+c z & =(b, c) .
\end{aligned}
$$

The general solution to the second equation is

$$
y=y_{0}+\frac{c}{(b, c)} s \quad \text { and }
$$

where $s \in \mathbb{Z}$ is any integer. Observe that

$$
(a, b, c)=(a,(b, c)) .
$$

Therefore the general solution to the first equation is

$$
x=x_{0}+\frac{(b, c)}{(a, b, c)} t \quad \text { and } \quad u=u_{0}-\frac{a}{(a, b, c)} t .
$$

Thus the general solution to the equation

$$
a x+b y+c z=d
$$

is

$$
\begin{aligned}
& x=x_{0}+\frac{(b, c)}{(a, b, c)} t \\
& y=y_{0} u_{0}-\frac{a y_{0}}{(a, b, c)} t+\frac{c}{(b, c)} s \\
& z=z_{0}-\frac{a z_{0}}{(a, b, c)} t-\frac{b}{(b, c)} s .
\end{aligned}
$$

2.4.1 We first find the greatest common divisor. We have

$$
\begin{aligned}
231896 & =1 \cdot 198061+33835 \\
198061 & =5 \cdot 33835+28886 \\
33835 & =1 \cdot 28886+4949 \\
28886 & =5 \cdot 4949+4141 \\
4949 & =1 \cdot 4141+808 \\
4141 & =5 \cdot 808+101 \\
808 & =8 \cdot 101 .
\end{aligned}
$$

Thus the greatest common divisor is 101. It follows that

$$
\begin{aligned}
{[198061,231896] } & =\frac{198061 * 231896}{101} \\
& =454748056
\end{aligned}
$$

2.4.2 Suppose that $(a, b)=d$ and $[a, b]=m$. As $d \mid a$ and $a \mid m$ it follows that $d \mid m$.

Now suppose that $d \mid m$. Let $a=d$ and $b=m$. Then $d \mid a$ and $d \mid m$ and so it clear that $(a, b)=d$. Similarly $a \mid m$ and $b \mid m$ and so it is clear that $[a, b]=m$.
2.4.3. (a) We may assume that $y \geq z$. In this case

$$
\max (y, z)=y
$$

Thus the LHS is

$$
\min (x, y)
$$

There are two cases. If $x \leq y$ then the LHS is x.
In this case

$$
\min (x, y)=x \quad \text { and } \quad \min (x, z)=x
$$

Thus the RHS is also x.
Otherwise $x>y$. In this case the LHS is y and

$$
\min (x, y)=y \quad \text { and } \quad \min (x, z)=z
$$

Thus the RHS is

$$
\max (y, z)=y
$$

as well. Either way we have equality.
(b) We may find common prime factorisations

$$
a=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{l}^{e_{l}} \quad b=p_{1}^{f_{1}} p_{2}^{f_{2}} \ldots p_{l}^{f_{l}} \quad \text { and } \quad c=p_{1}^{g_{1}} p_{2}^{g_{2}} \ldots p_{l}^{g_{l}}
$$

We can compute the LHS and the RHS prime by prime. The exponent of p_{i} on the LHS is

$$
\min \left(e_{i}, \max \left(f_{i}, g_{i}\right)\right)
$$

and the exponent of p_{i} on the RHS is

$$
\max \left(\min \left(e_{i}, f_{i}\right), \min \left(e_{i}, g_{i}\right)\right)
$$

As these are equal, we have

$$
(a,[b, c])=([a, b],[c, d])
$$

(c) Note first that

$$
\begin{aligned}
\max (x, \min (y, z)) & =-\min (-x, \max (-y,-z)) \\
& =-\max (\min (-x,-y), \min (-x,-z)) \\
& =\min (\max (x, y), \min (x, z)) .
\end{aligned}
$$

We check that

$$
[a,(b, c)]=([a, b],[a . c])
$$

We pick common factorisations into primes, as in (b) and check this result prime by prime. The exponent of p_{i} on the LHS is

$$
\max \left(e_{i}, \min _{5}\left(f_{i}, g_{i}\right)\right)
$$

and the exponent of p_{i} on the RHS is

$$
\min \left(\max \left(e_{i}, f_{i}\right), \max \left(e_{i}, g_{i}\right)\right)
$$

As these are equal, we have

$$
[a,(b, c)]=([a, b],[a . c])
$$

Let $a=b=1$ and $c=0$. Then
$a+b c=1+0=1 \quad$ and $\quad(a+b)(a+c)=(1+1)(1+0)=2 \neq 1$.
Thus

$$
a+b c \neq(a+b)(a+c)
$$

