MODEL ANSWERS TO THE FOURTH HOMEWORK

2.1.5. Note that (a, b) divides a and b so that it divides a and $b c$, that is, (a, b) is a common divisor of a and $b c$. Thus (a, b) divides $(a, b c)$. By symmetry, (a, c) divides $(a, b c)$. On the other hand, (a, b) divides b and (a, c) divides c so that (a, b) and (a, c) are coprime. Thus $(a, b)(a, c)$ divides $(a, b c)$.
Since $(a, b c)$ divides $b c$, we may write $(a, b c)=d_{1} d_{2}$, where d_{1} divides b and d_{2} divides c. Then d_{1} divides $d_{1} d_{2}$, which divides a. Thus d_{1} divides a and it divides b so that it is a common divisor of a and b. Thus d_{1} divides (a, b). By symmetry d_{2} divides (a, c). Thus $(a, b c)=d_{1} d_{2}$ divides $(a, b)(a, c)$. As $(a, b c)=d_{1} d_{2}$ divides $(a, b)(a, c)$ and vice-versa, it follows that $(a, b c)=(a, b)(a, c)$, as both sides are natural numbers. Suppose that $a=b x+c y$. Now if d divides a and b then d certainly divides $a=b x+c y$ and b. Vice-versa, if d divides b and $b x+c y$ then d divides $c y$. As d divides b and $(b, c)=1$, it follows that d divides y. Thus the common divisors of $\{a, b\}$ and $\{b, y\}$ are the same, so that $(a, b)=(b, y)$. By symmetry, it follows that $(a, c)=(c, x)$.
By what we already proved,

$$
\begin{aligned}
(b x+c y, b c) & =(a, b c) \\
& =(a, b)(a, c) \\
& =(b, y)(c, x) .
\end{aligned}
$$

2.2.6. Let

$$
u=3+\sqrt{10}
$$

Note that if we put

$$
v=\sqrt{10}-3
$$

then

$$
\begin{aligned}
u v & =(\sqrt{10}+3)(\sqrt{10}-3) \\
& =(\sqrt{10})^{2}-3^{2} \\
& =10-9 \\
& =1 .
\end{aligned}
$$

Thus u is a unit, with inverse v. But then

$$
\begin{aligned}
u^{n} v^{n} & =(u v)^{n} \\
& =1^{n} \\
& =1 .
\end{aligned}
$$

It follows that u^{n} is a unit for all natural numbers n. In this case

$$
u^{n}=v^{-n}
$$

so that $u^{-n} \in \mathbb{Z}[\sqrt{10}]$ for all natural numbers n. From there is follows easily that u^{n} is a unit for all integers n.
2.3.5. Since $(a, b)=1$ the linear Diophantine equation

$$
a x+b y=c
$$

has infinitely many integral solutions. The two intercepts are $(c / a, 0)$ and $(0, a / b)$ and the distance between these points is

$$
\sqrt{\left(\frac{c}{a}\right)^{2}+\left(\frac{c}{b}\right)^{2}}=\frac{c}{a b} \sqrt{a^{2}+b^{2}} .
$$

Now the distance between two successive solutions is

$$
\sqrt{a^{2}+b^{2}} .
$$

The distance between n solutions is then

$$
(n-1) \sqrt{a^{2}+b^{2}}
$$

and this must be at most the distance between the intercepts. Thus

$$
(n-1) \sqrt{a^{2}+b^{2}} \leq \frac{c}{a b} \sqrt{a^{2}+b^{2}},
$$

so that cancelling and moving the one over, we get

$$
n \leq \frac{c}{a b}+1
$$

On the other hand, amongst all solutions let $\left(a_{0}, b_{0}\right)$ be the solution with the largest negative value for a_{0} and let $\left(a_{n+1}, b_{n+1}\right)$ be the solution with the largest negative value for b_{n+1}. Then the n solutions in the first quadrant are the only solutions between these two solutions. The distance between $\left(a_{0}, b_{0}\right)$ and $\left(a_{n+1}, b_{n+1}\right)$ is then

$$
(n+1) \sqrt{a^{2}+b^{2}}
$$

and this must be greater than the distance between the intercepts. Thus

$$
\begin{aligned}
(n+1) \sqrt{a^{2}+b^{2}} & \leq \frac{c}{a b} \sqrt{a^{2}+b^{2}},
\end{aligned}
$$

so that cancelling and moving the one over, we get

$$
n>\frac{c}{a b}-1 .
$$

3.1.1. Suppose that the consecutive integers are $a, a+1, \ldots, a+r-1$. Then the difference between any of these integers is at most $r-1$, so that these none of these r integers are congruent. As there are exactly r congruence classes, it follows that any integer is congruent to exactly one of these r numbers. By assumption $f(a+i)$ is divisible by r, for any $0 \leq i \leq r-1$, so that $f(a+i) \equiv 0 \bmod r$.
Suppose that $b \in \mathbb{Z}$ is an integer. Then $b \equiv a+i \bmod r$, for some $0 \leq i \leq r-1$. We check below that $f(a+i) \equiv f(b) \bmod r$. Assuming this, we have

$$
\begin{aligned}
f(b) & \equiv f(a+i) \quad \bmod r \\
& =0 \quad \bmod r,
\end{aligned}
$$

so that $f(b)$ is divisible by r.
Note that $f(x)=x^{2}+x$ is always even, since both

$$
f(0)=0^{2}+0=0 \quad \text { and } \quad f(1)=1^{2}+1=2,
$$

are even. The coefficients of $x^{2}+x$ are 1 and 0 and the greatest common divisor is 1 , which is not divisbile by 2 .
Suppose that a and b are two integers, which are congruent modulo r. We check that $f(a) \equiv f(b) \bmod r$. We proceed by induction on n in the expression

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} .
$$

Let

$$
g(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1} \quad \text { and } \quad h(x)=a_{n} x^{n} .
$$

Then $f(x)=g(x)+h(x)$. Suppose that we know $h(a) \equiv h(b) \bmod r$. By induction on n we would have $g(a) \equiv g(b) \bmod r$. But then

$$
\begin{aligned}
f(a) & =g(a)+h(a) \\
& \equiv g(b)+h(b) \quad \bmod r \\
& =f(b) .
\end{aligned}
$$

Therefore it suffices to check that $h(a)=h(b) \bmod r$. Let $k(x)=x^{n}$. Note that if $k(a) \equiv k(b) \bmod r$ then

$$
\begin{aligned}
h(a) & =a_{n} a^{n} \\
& \equiv a_{n} b^{n} \quad \bmod r \\
& h(b) .
\end{aligned}
$$

Therefore it suffices to check that $k(a)=k(b) \bmod r$. We proceed by induction on n. Assume the result for lower values of n. We have

$$
\begin{aligned}
k(a) & =a^{n} \\
& =a \cdot a^{n-1} \\
& \equiv b \cdot b^{n-1} \quad \bmod r \\
& =b^{n} \\
& =k(b) .
\end{aligned}
$$

This completes the induction and the proof. In short, $f(a) \equiv f(b)$ $\bmod r$, as equivalence modulo r respects addition and multiplication and a polynomial is built up using just these two operations.
3.1.2. Suppose a is an integer. If we write a in decimal then we get

$$
a=\sum a_{i} 10^{i}
$$

where $a_{1}, a_{2}, \ldots, a_{n}$ are digits, so that a_{i} are integers between 0 and 9 .
Let

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} .
$$

Then

$$
a=f(10) .
$$

If we work modulo 9 we get we have

$$
10 \equiv 1 \quad \bmod 9,
$$

so that

$$
\begin{aligned}
a & \equiv f(1) \quad \bmod 10 \\
& =a_{0}+a_{1}+\cdots+a_{n}
\end{aligned}
$$

So throwing out nines just means that if we work modulo 9, we are just adding the digits and working modulo 9 respects addition and multiplication.
3.1.7. As r and s are odd we can find a and b such that $r=2 a+1$ and $s=2 b+1$.
(a) We have

$$
\begin{aligned}
\frac{r s-1}{2} & =\frac{(2 a+1)(2 b+1)-1}{2} \\
& =\frac{4 a b+2 a+2 b+1-1}{2} \\
& =2 a b+a+b \\
& \equiv a+b \bmod 2 \\
& =\frac{r-1}{2}+\frac{s-1}{2}
\end{aligned}
$$

Thus

$$
\frac{r s-1}{2} \equiv \frac{r-1}{2}+\frac{s-1}{2} \quad \bmod 2 .
$$

(b) Now one of a or $a+1$ is even, so that $a(a+1)$ is always divisible by 2 and $4 a(a+1)$ is always divisible by 8 . Thus, we have

$$
\begin{aligned}
r^{2} & =(2 a+1)^{2} \\
& =4 a^{2}+4 a+1 \\
& =4 a(a+1)+1 \\
& \equiv 1 \quad \bmod 8 .
\end{aligned}
$$

(c) As $a^{2}+a$ is always divisible by 2 it follows that $2\left(a^{2}+a\right)\left(b^{2}+b\right)$ is divisible by 8 . Thus

$$
\begin{aligned}
\frac{(r s)^{2}-1}{8} & =\frac{(2 a+1)^{2}(2 b+1)^{2}-1}{8} \\
& =\frac{\left(4 a^{2}+4 a+1\right)\left(4 b^{2}+4 b+1\right)-1}{8} \\
& =\frac{4 a^{2}+4 a}{8}+\frac{4 b^{2}+4 b}{8}+2\left(a^{2}+a\right)\left(b^{2}+b\right) \\
& \equiv \frac{r^{2}-1}{8}+\frac{s^{2}-1}{8} \bmod 8
\end{aligned}
$$

3.1.8. Let n be an integer. Suppose that n is even and n is prime. Then $n= \pm 2$. If $n=-2$ then $n=0$ which is not prime. If $n=2$ then $n+2=4$ which is not prime. Thus if n and $n+2$ are both prime then n is odd.
Suppose that n is odd. As [0], [2] and [4] = [1] are distinct equivalence classes, modulo 3 , it follows that one of $n, n+2$ and $n+4$ is congruent to zero modulo three, so that one of them is divisible by 3 . Thus if all three of $n, n+2$ and $n+4$ are prime, then one of $n, n+2, n+4$ is equal to ± 3. Since this gives only finitely many possible values for n,
it follows that the set

$$
\{n \in \mathbb{Z} \mid n, n+2 \text { and } n+4 \text { are all prime }\}
$$

is finite.
3.1.10. First note that

$$
k+3 \equiv k \quad \bmod 3
$$

On the other hand, working modulo three, we have

$$
[0]^{3}=\left[0^{3}\right]=0 \quad[1]^{3}=\left[1^{3}\right]=[1] \quad \text { and } \quad[2]^{3}=\left[2^{3}\right]=[8]=[2] .
$$

Thus

$$
[0]^{6}=0 \quad[1]^{6}=[1] \quad \text { and } \quad[2]^{6}=\left([2]^{3}\right)^{2}=[2]^{2}=[4]=[1]
$$

Thus

$$
\begin{aligned}
(k+6)^{k+6} & \equiv k^{k+6} \quad \bmod 3 \\
& =k^{6} \cdot k^{k} \\
& \equiv k^{k} \quad \bmod 3 .
\end{aligned}
$$

Thus the sequence $k^{k} \bmod 3$ repeats itself every sixth integer. Therefore the period is a divisor of six. Consider the first few terms
$0^{0}=0 \quad 1^{1}=1 \quad 2^{2}=4 \equiv 1 \quad \bmod 3 \quad$ and $\quad 3^{3}=27 \equiv 0 \quad \bmod 3$.
This sequence does not repeat itself every second term but the third term is a repeat. Therefore the period is either 3 or 6 . But

$$
\begin{aligned}
5^{5} & \equiv 2^{5} \quad \bmod 3 \\
& =2^{3} \cdot 2^{2} \\
& \equiv 2 \cdot 2^{2} \quad \bmod 3 \\
& \equiv 2 \quad \bmod 3 .
\end{aligned}
$$

Thus the period is six.

