MODEL ANSWERS TO THE FIFTH HOMEWORK

3.2.2 Suppose that u_{1} and u_{2} are two units. Then there are two elements of the ring, v_{1} and v_{2}, such that $u_{1} v_{1}=1=u_{2} v_{2}$. We have

$$
\begin{aligned}
\left(u_{1} v_{1}\right)\left(u_{2} v_{2}\right) & =\left(u_{1} v_{1}\right)\left(u_{2} v_{2}\right) \\
& =1 \cdot 1 \\
& =1
\end{aligned}
$$

Thus $u_{1} u_{2}$ is a unit. Thus the units are closed under multiplication and there is a well-defined multiplication of units. Multiplication of units is associative as multiplication in the ring is associative. 1 is a unit and it plays the role of the identity. If u is a unit then there is an element v of the ring such that $u v=1$. Then u is the inverse of v in the ring, so that v is a unit. But then v is the inverse of u in the units, so that the units are a group.
3.2.2 Suppose that $a \equiv b \bmod m$. Then m divides $a-b$ so that there is an integer k such that $a-b=m k$. Thus $a=b+m k$ and $b=a+(-k) m$. Suppose that d divides b and d divides m. Then d divides a and so d is a common divisor of a and m. Conversely if d divides a and m then it divides b and so d is a common divisor of b and m. Thus a, m and b, m have the same common divisors.
In particular they have the same greatest common divisor.
3.2.6 It is enough to show this for one common residue system. Consider

$$
S=\{r \in \mathbb{Z} \mid-m / 2<r \leq m / 2\}
$$

Then 1 and $-1 \in S$ and $1^{2}=(-1)^{2}$.
3.2.7 If n is odd then

$$
(-1)^{n / d}=-1,
$$

for every divisor d of n. Therefore

$$
\begin{aligned}
\sum_{d \mid n}(-1)^{n / d} \varphi(d) & =\sum_{d \mid n}-\varphi(d) \\
& =-\sum_{d \mid n} \varphi(d) \\
& =-n
\end{aligned}
$$

Now suppose that n is even. Then we may write $n=2^{k} m$ where $k \geq 1$ and m is odd. If d is a divisor of n then $d=2^{j} c$, where c is a divisor
of m and $0 \leq j \leq k$. Note that c is odd. Therefore

$$
\begin{aligned}
\sum_{d \mid n}(-1)^{n / d} \varphi(d) & =\sum_{j=0}^{k} \sum_{c \mid m}(-1)^{2^{k-j} m / c} \varphi\left(2^{j} c\right) \\
& =\sum_{c \mid m} \varphi\left(2^{k}\right) \varphi(c)-\sum_{j=0}^{k-1} \sum_{c \mid m} \varphi\left(2^{j}\right) \varphi(c) \\
& =\sum_{c \mid m}\left(2^{k}-2^{k-1}\right) \varphi(c)-\sum_{j=1}^{k-1} \sum_{c \mid m}\left(2^{j}-2^{j-1}\right) \varphi(c)-\sum_{k \mid m} \varphi(c) \\
& =\left(2^{k}-2^{k-1}\right) \sum_{c \mid m} \varphi(c)-\sum_{j=1}^{k-1}\left(2^{j}-2^{j-1}\right) \sum_{c \mid m} \varphi(c)-\sum_{k \mid m} \varphi(c) \\
& =\left(2^{k}-2^{k-1}\right) \varphi(m)-\sum_{j=1}^{k-1}\left(2^{j}-2^{j-1}\right) \varphi(m)-\varphi(m) \\
& =\varphi(m)\left(2^{k}-2^{k-1}-\sum_{j=1}^{k-1}\left(2^{j}-2^{j-1}\right)-1\right) \\
& =\varphi(m)\left(2^{k}-2^{k-1}-2^{k-1}\right) \\
& =0
\end{aligned}
$$

3.2.10 We apply the binomial theorem

$$
\begin{aligned}
(a+b)^{p} & =a^{p}+\binom{p}{1} a^{p-1} b+\binom{p}{2} a^{p-2} b^{2}+\binom{p}{3} a^{p-3} b^{3}+\cdots+\binom{p}{p-1} a b^{p-1}+b^{p} \\
& \equiv a^{p}+b^{p} \quad \bmod p
\end{aligned}
$$

Here we used the fact that

$$
\binom{p}{i}=\frac{p!}{i!(p-1)!}
$$

is a natural number divisible by p, as neither $i!$ nor $(p-i)!$ are divisible by p.
It follows that

$$
\left(a_{1}+a_{2}+a_{3}+\cdots+a_{n}\right)^{p} \underset{2}{\equiv a_{1}^{p}+a_{2}^{p}+\cdots+a_{n}^{p} \quad \bmod p}
$$

by induction on n. In particular

$$
\begin{aligned}
n^{p} & =(1+1+1+\cdots+1)^{p} \\
& \equiv 1^{p}+1^{p}+\cdots+1^{p} \quad \bmod p \\
& =1+1+1+\cdots+1 \\
& =n .
\end{aligned}
$$

3.2.12 If $m=1$ then $d=1$ and in this case

$$
\begin{aligned}
\varphi(a b) & =\varphi(a) \varphi(b) \\
& =\frac{d \varphi(a) \varphi(b)}{\phi(d)}
\end{aligned}
$$

By symmetry we are also done if $n=1$. Thus we may assume that $m>1$ and $n>1$. Suppose that

$$
m=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{n}^{e_{t}} \quad \text { and } \quad n=p_{1}^{f_{1}} p_{2}^{f_{2}} \ldots p_{n}^{f_{t}}
$$

are the prime factorisations of m and n. It follows that the prime factorisation of d is

$$
n=p_{1}^{g_{1}} p_{2}^{g_{2}} \ldots p_{t}^{g_{t}}
$$

where $g_{i}=\min \left(e_{i}, f_{i}\right)$. In this case

$$
\begin{aligned}
\varphi(m) & =\left(p_{1}^{e_{1}}-p_{1}^{e_{1}-1}\right)\left(p_{2}^{e_{2}}-p_{2}^{e_{2}-1}\right) \ldots\left(p_{t}^{e_{t}}-p_{t}^{e_{t}-1}\right) \\
\varphi(n) & =\left(p_{1}^{f_{1}}-p_{1}^{f_{1}-1}\right)\left(p_{2}^{f_{2}}-p_{2}^{f_{2}-1}\right) \ldots\left(p_{t}^{f_{t}}-p_{t}^{f_{t}-1}\right) \\
\varphi(d) & =\left(p_{1}^{g_{1}}-p_{1}^{g_{1}-1}\right)\left(p_{2}^{g_{2}}-p_{2}^{g_{2}-1}\right) \ldots\left(p_{t}^{g_{t}}-p_{t}^{g_{t}-1}\right),
\end{aligned}
$$

where all products only run over the primes with non-zero indices.
Since we can prove this formula prime by prime, we may assume that $m=p^{e}$ and $n=p^{f}$ where p is a prime and e and f are natural numbers. Possibly switching m and n we may assume that $e \leq f$. In this case $d=p^{e}$ and we have

$$
\begin{aligned}
\frac{d \varphi(a) \varphi(b)}{\phi(d)} & =\frac{p^{e}\left(p^{e}-p^{e-1}\right)\left(p^{f}-p^{f-1}\right)}{\left(p^{e}-p^{e-1}\right)} \\
& =p^{e}\left(p^{f}-p^{f-1}\right) \\
& =p^{e+f}-p^{e+f-1} \\
& =\varphi(a b)
\end{aligned}
$$

3.2.14 Suppose that

$$
n=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{n}^{e_{t}}
$$

is the prime factorisation of n. It follows that the prime factorisation of d is

$$
d=\underset{1}{p_{1}^{f_{1}} p_{2}^{f_{2}} \ldots p_{t}^{f_{t}}}
$$

where $f_{i} \leq e_{i}$. We have

$$
\begin{aligned}
\varphi(n) & =\left(p_{1}^{e_{1}}-p_{1}^{e_{1}-1}\right)\left(p_{2}^{e_{2}}-p_{2}^{e_{2}-1}\right) \ldots\left(p_{t}^{e_{t}}-p_{t}^{e_{t}-1}\right) \\
\varphi(d) & =\left(p_{1}^{f_{1}}-p_{1}^{f_{1}-1}\right)\left(p_{2}^{f_{2}}-p_{2}^{f_{2}-1}\right) \ldots\left(p_{t}^{f_{t}}-p_{t}^{f_{t}-1}\right)
\end{aligned}
$$

Therefore it suffices to observe that if p is a prime and $f \leq e$ are natural numbers then $p^{f}-p^{f-1}=p^{f-1}(p-1)$ divides $p^{e-1}-p^{e}=p^{e-1}(p-1)$. 3.2.23 We first find the prime factorisation of 561 ,

$$
\begin{aligned}
561 & =3 \cdot 187 \\
& =3 \cdot 11 \cdot 17 .
\end{aligned}
$$

It follows that
$a^{2} \equiv 1 \quad \bmod 3 \quad a^{10} \equiv 1 \quad \bmod 11 \quad$ and $\quad a^{16} \equiv 1 \bmod 17$.
Note that 2, 10 and 16 all divide $2^{4} \cdot 5=80$. Thus

$$
a^{80} \equiv 1 \quad \bmod 3 \quad a^{80} \equiv 1 \quad \bmod 11 \quad \text { and } \quad a^{80} \equiv 1 \bmod 17 .
$$

It follows that $a^{80}-1$ is divisible by 3,11 and 17 . As these numbers are coprime, it follows that $a^{80}-1$ is divisible by $3 \cdot 11 \cdot 17=561$. Thus

$$
a^{80} \equiv 1 \quad \bmod 561
$$

As $560=7 \cdot 80$, it follows that

$$
\begin{aligned}
a^{560} & =\left(a^{80}\right)^{7} \\
& \equiv 1^{7} \quad \bmod 561 \\
& =1 .
\end{aligned}
$$

Suppose that m is not square free. Then there is a prime p such that p^{2} divides m. We may write $m=p^{e} l$, where $e>1$ and l is coprime to p. Consider

$$
a=l p^{e-1}+1 .
$$

We have

$$
\begin{aligned}
a^{p} & =\left(l p^{e-1}-1\right)^{p} \\
& =\left(l p^{e-1}\right)^{p}+\binom{p}{1}\left(l p^{e-1}\right)^{p-1}+\cdots+\binom{p}{1}\left(l p^{e-1}\right)+1^{p} \\
& \equiv 1 \quad \bmod m .
\end{aligned}
$$

Thus a has order p.
Suppose that

$$
a^{m-1} \equiv 1_{4} \bmod m .
$$

Multiplying both sides by a we get

$$
\begin{aligned}
a & \equiv a^{m} \quad \bmod m \\
& =\left(a^{p}\right)^{l p^{e-1}} \\
& \equiv(1)^{l p^{p^{e-1}}} \bmod m \\
& =1
\end{aligned}
$$

Thus $a \equiv 1 \bmod m$, which is absurd.
Thus a^{m-1} is not equivalent, modulo m, to one.

