MODEL ANSWERS TO THE SIXTH HOMEWORK

3.3.1. a) Note that 4,21 and 25 pairwise coprime. We have to solve three auxiliary equations

$$
\begin{aligned}
& 21 \cdot 25 z_{1} \equiv 1 \quad \bmod 4 \\
& 4 \cdot 25 z_{2} \equiv 1 \quad \bmod 21 \\
& 4 \cdot 21 z_{3} \equiv 1 \bmod 25 \text {. }
\end{aligned}
$$

These reduce to

$$
\begin{aligned}
& z_{1} \equiv 1 \quad \bmod 4 \\
& 16 z_{2} \equiv 1 \bmod 21 \\
& 9 z_{3} \equiv 1 \bmod 25 .
\end{aligned}
$$

Note that $64 \equiv 1 \bmod 21$ and $126 \equiv 1 \bmod 25$. Thus we get

$$
\begin{aligned}
z_{1} & =1 \\
z_{2} & =4 \\
z_{3} & =14 .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
x & =21 \cdot 25 \cdot 1 \cdot 3+4 \cdot 25 \cdot 4 \cdot 5+4 \cdot 21 \cdot 14 \cdot 7 \\
& =1307 \bmod 4 \cdot 21 \cdot 25
\end{aligned}
$$

b) We first solve equations for y. The greatest common divisor of 3 and 12 is 3 . This divides 9 , so the first equation reduces to $x \equiv 3 \bmod 4$. 4 and 35 are coprime. $4 \cdot 9=36 \equiv 1 \bmod 35$. So 9 is the inverse of 4 modulo 35 . The second equation reduces to $x \equiv 10 \bmod 35.6$ and 11 are coprime. $2 \cdot 6=12 \equiv 1 \bmod 11$. Thus $x \equiv 4 \bmod 11$.
So we first have to solve the three equations

$$
\begin{aligned}
x & \equiv 3 \quad \bmod 4 \\
x & \equiv 10 \quad \bmod 35 \\
x & \equiv 4 \quad \bmod 11 .
\end{aligned}
$$

Note that 4,35 and 11 pairwise coprime. We have to solve three auxiliary equations

$$
\begin{aligned}
& 35 \cdot 11 z_{1} \equiv 1 \quad \bmod 4 \\
& 4 \cdot 11 z_{2} \equiv 1 \quad \bmod 35 \\
& 4 \cdot 35 z_{3} \equiv 1 \quad \bmod 11 .
\end{aligned}
$$

These reduce to

$$
\begin{aligned}
z_{1} \equiv 1 & \bmod 4 \\
9 z_{2} \equiv 1 & \bmod 35 \\
8 z_{3} \equiv 1 & \bmod 11
\end{aligned}
$$

Note that $36 \equiv 1 \bmod 35$ and $56 \equiv 1 \bmod 11$. Thus we get

$$
\begin{aligned}
& z_{1}=1 \\
& z_{2}=4 \\
& z_{3}=7 .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
x & =35 \cdot 11 \cdot 1 \cdot 3+4 \cdot 11 \cdot 4 \cdot 10+4 \cdot 35 \cdot 7 \cdot 4 \\
& =675 \bmod 4 \cdot 35 \cdot 11
\end{aligned}
$$

To find y, note that there are three numbers modulo $3 \cdot 4 \cdot 35 \cdot 11$ whose residue modulo $4 \cdot 35 \cdot 11$ is 675 , namely:
$675, \quad 675+4 \cdot 35 \cdot 11=2215 \quad$ and $\quad 675+2 \cdot 4 \cdot 35 \cdot 11=3755$.
(c) Note that 12 and 21 have greatest common divisor 3 . Now 3 divides $4-1$ so that the first two equations have a solution. 21 and 35 have greatest common divisor 7 . 7 divides $18-4=14$ and so the second two equations have a solution. 12 and 35 are coprime. Thus the first and third equations have a solution.
Thus we can solve these equations. The solutions are residue classes modulo the lowest common multiple of 12 , 21 and 35 , that is, $3 \cdot 7 \cdot 4 \cdot 5=$ 420.

We first solve the first and second equations. We first solve

$$
\begin{array}{ll}
x \equiv 1 & \bmod 4 \\
x \equiv 4 & \bmod 7
\end{array}
$$

We need to solve

$$
\begin{array}{ll}
7 z_{1} \equiv 1 & \bmod 4 \\
4 z_{2} \equiv 1 & \bmod 7
\end{array}
$$

We get

$$
\begin{aligned}
& z_{1} \equiv 3 \quad \bmod 4 \\
& z_{2} \equiv 2 \quad \bmod 7 \\
& 2
\end{aligned}
$$

Thus

$$
\begin{aligned}
x & =7 \cdot 1 \cdot 3+4 \cdot 4 \cdot 2 \\
& \equiv-7+4 \quad \bmod 4 \cdot 7 \\
& \equiv 25 \quad \bmod 4 \cdot 7
\end{aligned}
$$

In fact 25 is also the solution to the original equations. Thus 25 is the solution to the equation

$$
x \equiv 25 \bmod 3 \cdot 4 \cdot 7
$$

Now we need to solve the second and third equations. We first solve

$$
\begin{array}{ll}
x \equiv 1 & \bmod 3 \\
x \equiv 3 & \bmod 5
\end{array}
$$

We need to solve

$$
\begin{array}{ll}
5 z_{1} \equiv 1 & \bmod 3 \\
3 z_{2} \equiv 1 & \bmod 5
\end{array}
$$

We get

$$
\begin{array}{ll}
z_{1} \equiv 2 & \bmod 3 \\
z_{2} \equiv 2 & \bmod 5
\end{array}
$$

Thus

$$
\begin{aligned}
x & =5 \cdot 1 \cdot 2+3 \cdot 3 \cdot 2 \\
& =13 \bmod 15 .
\end{aligned}
$$

Now this is not a solution to the original equations. The general solution to the equation above is $y=13+15 t$. If this is a solution to the original equations, we want

$$
13+15 t \equiv 4 \quad \bmod 21
$$

Thus

$$
15 t \equiv 12 \bmod 21
$$

Thus

$$
5 t \equiv 4 \quad \bmod 7
$$

This has solution $t=5$. Thus $y=13+15 \cdot 5=88$. This is a solution to the original pair of equations

$$
\begin{aligned}
& y \equiv 4 \quad \bmod 21 \\
& y \equiv 18 \quad \bmod 35
\end{aligned}
$$

Finally we want to find a number y such that

$$
\begin{aligned}
& y \equiv 25 \quad \bmod 3 \cdot 4 \cdot 7 \\
& y \equiv 88 \quad \bmod 3 \cdot 5 \cdot 7
\end{aligned}
$$

The general solution to the first equation is $y=25+56 t$. So we want

$$
25+56 t \equiv 88 \quad \bmod 3 \cdot 5 \cdot 7
$$

We get

$$
56 t \equiv 63 \bmod 3 \cdot 5 \cdot 7
$$

Thus

$$
8 t \equiv 9 \bmod 3 \cdot 5
$$

We get $t=3$. Thus the solution is $25+56 \cdot 3=193$.
3.3.2. Let

$$
f: \mathbb{Z}_{10} \longrightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{5}
$$

be the function given by the Chinese Remainder theorem. Then

$$
\begin{aligned}
& f(0)=(0,0) \\
& f(1)=(1,1) \\
& f(2)=(0,2) \\
& f(3)=(1,3) \\
& f(4)=(0,4) \\
& f(5)=(1,0) \\
& f(6)=(0,1) \\
& f(7)=(1,2) \\
& f(8)=(0,3) \\
& f(9)=(1,4) .
\end{aligned}
$$

3.3.5. Let $p_{1}, p_{2}, \ldots, p_{r}$ be distinct primes, for example

$$
2,3,5, \ldots, p_{r}
$$

Let $m_{i}=p_{i}^{2}$. Then

$$
m_{1}, m_{2}, \ldots, m_{r}
$$

are pairwise coprime. Let

$$
c_{i}=m_{i}-i-1
$$

so that

$$
\begin{aligned}
& c_{1} \equiv 0 \quad \bmod m_{1} \\
& c_{2} \equiv-1 \quad \bmod m_{2} \\
& c_{3} \equiv-2 \bmod m_{3} \\
& \vdots \quad \vdots \quad \vdots \\
& c_{r} \equiv-r+1 \quad \bmod m_{r} .
\end{aligned}
$$

Then, by the Chinese remainder theorem, we can find a natural number x congruent to c_{i}, modulo m_{i}, for every $1 \leq i \leq r$. Note that

$$
x \equiv 0 \quad \bmod m_{1},
$$

so that $m_{1}=p_{1}^{2}$ divides x. Thus x is not square-free. But

$$
x+1 \equiv 0 \quad \bmod m_{2},
$$

so that p_{2}^{2} divides $x+1$. Thus $x+1$ is not square-free. In general

$$
x+(i-1) \equiv 0 \quad \bmod m_{i},
$$

so that p_{i}^{2} divides $x+i=1$. Thus $x+i-1$ is not square-free.
It follows that none of the r consecutive integers

$$
x, \quad x+1, \quad x+2, \quad \ldots \quad x+r-1
$$

is square-free.
3.3.7. (a) Let p be a prime dividing n. Suppose that p does not divide $b=0 \cdot a+b$. In this case, we take $x=0$. If p does divide b then p does not divide a. Then $b+a=b+1 \cdot a$ is not divisible by p. In this case, we take $x=1$.
Let m be the product of all primes dividing n (so that m is square-free and has the same prime factors as n). For every prime $m_{i}=p_{i}$ dividing m we have already shown that we can find c_{i} such that

$$
a x \equiv c_{i}-b \neq 0 \quad \bmod m_{i},
$$

has a solution. By the Chinese remainder theorem, we can find x such that all of these equations have a simultaneous solution. In this case $a x+b$ is coprime to every $m_{i}=p_{i}$ so that $a x+b$ is coprime to n.
(b) We have to construct an infinite sequence of integers

$$
x_{1}, x_{2}, \ldots
$$

whose elements are pairwise coprime. Suppose that we have constructed

$$
x_{1}, x_{2}, \ldots, x_{i}
$$

Let n be the product of

$$
\prod_{j=1}^{i}\left(a x_{i}+b\right)
$$

Then we can find x such that $(a x+b, n)=1$. Let $x=x_{i+1}$. Then $a x_{i+1}+b$ is coprime to n so that it is coprime to $a x_{j}+b$ for $j \leq i$. Thus we can construct

$$
x_{1}, x_{2}, \ldots, x_{i+1}
$$

and so we can construct an infinite sequence.
3.3.8. We have

$$
\begin{aligned}
a \cdot a^{\varphi(m)-1} & =a^{\varphi(m)} \\
& \equiv 1 \quad \bmod m .
\end{aligned}
$$

Thus

$$
x=a^{\varphi(m)-1}
$$

is a solution to the equation

$$
a x \equiv 1 \quad \bmod m
$$

It follows that

$$
x=a^{\varphi(m)-1} b
$$

is a solution to the equation

$$
a x \equiv b \quad \bmod m .
$$

3.4.1 If $p \leq n+1$ then we are done by (3.1.1). So we may assume that $n+1<p$. Since the difference between any $n+1$ consecutive integers is at most n, it follows that any $n+1$ consecutive integers are pairwise different modulo p. Thus the polynomial $\bar{f}(x) \in \mathbb{Z}_{p}[x]$, obtained from $f(x)$ by reduction modulo p, has at least $n+1$ roots. It follows that $\bar{f}(x)$ is the zero polynomial. But then every coefficient of $f(x)$ is divisible by p, so that $p \mid f(a)$ for every integer a.

