
MODEL ANSWERS TO THE SEVENTH HOMEWORK

3.4.2. We first find the prime factorisation of 1125,

1125 = 5 · 225

= 52 · 45

= 53 · 9
= 32 · 53.

By the Chinese remainder theorem, it suffices to find the roots modulo
9 = 32 and modulo 125 = 53.
We start with the problem of finding roots modulo 9. We first find the
roots modulo 3. We get the equation

x3 ≡ 0 mod 3.

This has the single solution x0 = 0. Now we use approximation to find
all of the roots. f ′(x) = 3x2 and so f ′(x0) ≡ 0 mod 3, so that x0 is
a singular solution. But f(x0) = 0 mod 9 so that every lift of 0 is a
solution. Thus 0, 3 and 6 are the solutions to x3−3x2+27 ≡ 0 mod 9.
We now consider the problem of finding the roots modulo 125. We first
find the roots modulo 5. We have to solve

x3 + 2x2 + 2 ≡ 0 mod 5.

By trial and error we see that x0 = 1 is the only solution.
We now try to lift this to a solution modulo 25. Note that

f ′(x) = 3x2 − 6x

so that f ′(x0) = 2 6= 0 mod 5. Thus there is a unique lift. We have to
solve the equation

5tf ′(x0) ≡ −f(x0) mod 25.

We have
f(x0) = 1− 3 + 27 = 25 ≡ 0 mod 25.

As f ′(x0) 6= 0 mod 5 this has the unique solution t = 0. Therefore
x1 = 1 is also a solution modulo 25. We now lift this to a solution
modulo 125. We have to solve

25tf ′(x0) ≡ −f(x0) mod 125.

This reduces to
2t ≡ 4 mod 5,
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so that t = 2. Thus we take

x2 = 1 + 2 · 25 = 51.

Finally, to get the solution modulo 1125, we have to solve

x ≡ 0 mod 3

x ≡ 51 mod 125.

This gives us

51, 51 + 3 · 125 = 426 and 51 + 6 · 125 = 801.

3.4.3 If we apply Taylor’s theorem to f(x), centred at m, we get

f(m + kf(m)) = f(m) + kf(m)f ′(m) + k2f(m)2
f ′′(m)

2
+ · · ·+ (kf(m))n

f (n)(m)

n!

= f(m)(kf ′(m) +
k2

2
f(m)f ′′(m) + · · ·+ kn

n!
f(m)n−1f (n)(m)).

= f(m)g(k),

where

g(x) = f ′(m)x +
x2

2
f(m)f ′′(m) + · · ·+ xn

n!
f(m)n−1f (n)(m),

is a polynomial with rational coefficients.
First note that since the equations f(x) = 0, f(x) = 1 and f(x) = −1
have finitely many solutions, we may pick m so that f(m) is neither
zero, nor a unit (that is, ±1). Now if we let k = n!l for some integer l
then g(k) is an integer, since each term of the expression for g(x) is an
integer. As g(x) is not the constant polynomial we can pick k so that
g(x) is neither zero, nor a unit. Thus f(m + kf(m)) is not prime for
infinitely many integers m + kf(m).
3.4.4 We first consider the case e = 1. We have to solve

x2 ≡ a mod 2.

Let f(x) = x2 − a. Then f ′(x) = 2x. If x0 = 0 then f ′(x0) = 0 and
if x0 = 1 then f ′(x0) = 2 ≡ 0 modulo 2. Thus there every solution is
singular.
3.4.5 (a) We prove this by induction on e. Let a1, a2, . . . , as be the s
distinct non-singular solutions modulo p. Let b1, b2, . . . , bs be their lift
to solutions modulo pe. We have

f ′(bi) ≡ f ′(ai) 6= 0 mod p.

Thus bi is a non-singular solution. Thus we may lift bi to a solution ci
modulo pe+1.
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(b) We already know that xd − 1 = 0 has d solutions modulo p. Let
f(x) = xd − 1. Then f ′(x) = dxd−1. If ai is a solution to

xd − 1 ≡ 0 mod p,

then ai 6= 0 so that f ′(ai) 6= 0 mod p. By (a) we may lift each of the
d solutions to d distinct solutions modulo pe, for every e. On the other
hand, every solution modulo pe is a solution modulo p, so that there
are at most d solutions modulo pe. Thus there are exactly d solutions.
3.4.7 We prove this by induction on k. If k = 1 then this is Wilson’s
theorem. Suppose we know the result for k < p− 2. Note that

(p− k − 1)!k! = k(p− k − 1)!(k − 1)!

≡ −(p− k)(p− k − 1)!(k − 1)! mod p

= −(p− k)!(k − 1)!

≡ −(−1)k mod p

= (−1)k+1.

Thus we are done by induction on k.
3.4.8 Suppose that

f(x) = a0 + a1x + a2x
2 + · · ·+ anx

n.

Then

f(a0x) = a0 + a1(a0x) + a2(a0x)2 + · · ·+ an(a0x)n

= a0(1 + a1x + a2a0x
2 + · · ·+ ana

n−1
0 xn)

= a0(1 + x(a1 + a2a0x + · · ·+ ana
n−1
0 xn−1)

= a0(1 + xg(x)),

where g(x) is a polynomial of degree n− 1. Note that g(x) 6= 0 as f(x)
is not constant. Suppose that p1, p2, . . . , pk is a sequence of finitely
many primes. Let m be the product and let l be a natural number.
Then

1 + lmg(lm) ≡ 1 mod m.

It follows that f(a0lm) is not divisible by any of the primes p1, p2, . . . , pk.
g(x) has only finitely many zeroes, so we may choose l so that g(lm) 6=
0. By the fundamental theorem of arithmetic, it follows that f(a0lm)
is divisible by a prime p, not belonging to the sequence p1, p2, . . . , pk.
In this case f(x) ≡ 0 mod p.
3.4.10 Not quite; if p = 2 then −1 = 1 = 12 is a square.
Let’s assume that p is an odd prime. By Euler’s criterion,(

−1

p

)
= 1 if and only if (−1)(p−1)/2 ≡ 1 mod p.
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If p ≡ 1 mod 4 then there is an integer k such that p = 4k+ 1. In this
case

p− 1

2
= 2k,

so that
(−1)(p−1)/2 = 1.

Therefore −1 is a square modulo p if p ≡ 1 mod 4.
If p is odd then the only other possibility is that p ≡ 3 mod 4. In this
case there is an integer k such that p = 4k + 3. It follows that

p− 1

2
= 2k + 1,

so that
(−1)(p−1)/2 = −1.

Thus −1 is not a square modulo p if p ≡ 3 mod 4.
3.4.11 We want to prove that if

(m− 1)! ≡ −1 mod m,

then m is a prime.
Suppose that m is composite. Then we may write m = ab, where a > 1
and b > 1. First suppose that we can choose a and b such that a < b.
Then

(m− 1)! = (m− 1)(m− 2) . . . (b + 1)b · (b− 1) . . . (a + 1) · a · (a− 1) . . .

= abk

= 0 mod m,

where k is an integer.
If m is composite and we cannot choose a 6= b then m = p2 is the
square of a prime. Suppose that p > 2. Then

(m− 1)! = (p2 − 1)(p2 − 2) . . . (2p + 1)(2p)(2p− 1) . . . (p + 1)p(p− 1) . . .

= p2k

= 0 mod m,

where k is an integer. The remaining case is m = 4 = 22. In this case

(m− 1)! = 3!

= 6

6= −1 mod m = 4.

Thus if
(m− 1)! ≡ −1 mod m,

then m is a prime.
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