MODEL ANSWERS TO THE SEVENTH HOMEWORK

3.4.2. We first find the prime factorisation of 1125 ,

$$
\begin{aligned}
1125 & =5 \cdot 225 \\
& =5^{2} \cdot 45 \\
& =5^{3} \cdot 9 \\
& =3^{2} \cdot 5^{3} .
\end{aligned}
$$

By the Chinese remainder theorem, it suffices to find the roots modulo $9=3^{2}$ and modulo $125=5^{3}$.
We start with the problem of finding roots modulo 9 . We first find the roots modulo 3 . We get the equation

$$
x^{3} \equiv 0 \quad \bmod 3
$$

This has the single solution $x_{0}=0$. Now we use approximation to find all of the roots. $f^{\prime}(x)=3 x^{2}$ and so $f^{\prime}\left(x_{0}\right) \equiv 0 \bmod 3$, so that x_{0} is a singular solution. But $f\left(x_{0}\right)=0 \bmod 9$ so that every lift of 0 is a solution. Thus 0,3 and 6 are the solutions to $x^{3}-3 x^{2}+27 \equiv 0 \bmod 9$. We now consider the problem of finding the roots modulo 125 . We first find the roots modulo 5 . We have to solve

$$
x^{3}+2 x^{2}+2 \equiv 0 \quad \bmod 5 .
$$

By trial and error we see that $x_{0}=1$ is the only solution. We now try to lift this to a solution modulo 25 . Note that

$$
f^{\prime}(x)=3 x^{2}-6 x
$$

so that $f^{\prime}\left(x_{0}\right)=2 \neq 0 \bmod 5$. Thus there is a unique lift. We have to solve the equation

$$
5 t f^{\prime}\left(x_{0}\right) \equiv-f\left(x_{0}\right) \quad \bmod 25
$$

We have

$$
f\left(x_{0}\right)=1-3+27=25 \equiv 0 \quad \bmod 25 .
$$

As $f^{\prime}\left(x_{0}\right) \neq 0 \bmod 5$ this has the unique solution $t=0$. Therefore $x_{1}=1$ is also a solution modulo 25 . We now lift this to a solution modulo 125. We have to solve

$$
25 t f^{\prime}\left(x_{0}\right) \equiv-f\left(x_{0}\right) \quad \bmod 125
$$

This reduces to

$$
2 t \equiv 4 \quad \bmod 5,
$$

so that $t=2$. Thus we take

$$
x_{2}=1+2 \cdot 25=51 .
$$

Finally, to get the solution modulo 1125 , we have to solve

$$
\begin{aligned}
& x \equiv 0 \quad \bmod 3 \\
& x \equiv 51 \quad \bmod 125 .
\end{aligned}
$$

This gives us

$$
51, \quad 51+3 \cdot 125=426 \quad \text { and } \quad 51+6 \cdot 125=801 .
$$

3.4.3 If we apply Taylor's theorem to $f(x)$, centred at m, we get

$$
\begin{aligned}
f(m+k f(m)) & =f(m)+k f(m) f^{\prime}(m)+k^{2} f(m)^{2} \frac{f^{\prime \prime}(m)}{2}+\cdots+(k f(m))^{n} \frac{f^{(n)}(m)}{n!} \\
& =f(m)\left(k f^{\prime}(m)+\frac{k^{2}}{2} f(m) f^{\prime \prime}(m)+\cdots+\frac{k^{n}}{n!} f(m)^{n-1} f^{(n)}(m)\right) . \\
& =f(m) g(k),
\end{aligned}
$$

where

$$
g(x)=f^{\prime}(m) x+\frac{x^{2}}{2} f(m) f^{\prime \prime}(m)+\cdots+\frac{x^{n}}{n!} f(m)^{n-1} f^{(n)}(m),
$$

is a polynomial with rational coefficients.
First note that since the equations $f(x)=0, f(x)=1$ and $f(x)=-1$ have finitely many solutions, we may pick m so that $f(m)$ is neither zero, nor a unit (that is, ± 1). Now if we let $k=n!l$ for some integer l then $g(k)$ is an integer, since each term of the expression for $g(x)$ is an integer. As $g(x)$ is not the constant polynomial we can pick k so that $g(x)$ is neither zero, nor a unit. Thus $f(m+k f(m))$ is not prime for infinitely many integers $m+k f(m)$.
3.4.4 We first consider the case $e=1$. We have to solve

$$
x^{2} \equiv a \quad \bmod 2 .
$$

Let $f(x)=x^{2}-a$. Then $f^{\prime}(x)=2 x$. If $x_{0}=0$ then $f^{\prime}\left(x_{0}\right)=0$ and if $x_{0}=1$ then $f^{\prime}\left(x_{0}\right)=2 \equiv 0$ modulo 2 . Thus there every solution is singular.
3.4.5 (a) We prove this by induction on e. Let $a_{1}, a_{2}, \ldots, a_{s}$ be the s distinct non-singular solutions modulo p. Let $b_{1}, b_{2}, \ldots, b_{s}$ be their lift to solutions modulo p^{e}. We have

$$
f^{\prime}\left(b_{i}\right) \equiv f^{\prime}\left(a_{i}\right) \neq 0 \quad \bmod p .
$$

Thus b_{i} is a non-singular solution. Thus we may lift b_{i} to a solution c_{i} modulo p^{e+1}.
(b) We already know that $x^{d}-1=0$ has d solutions modulo p. Let $f(x)=x^{d}-1$. Then $f^{\prime}(x)=d x^{d-1}$. If a_{i} is a solution to

$$
x^{d}-1 \equiv 0 \quad \bmod p,
$$

then $a_{i} \neq 0$ so that $f^{\prime}\left(a_{i}\right) \neq 0 \bmod p$. By (a) we may lift each of the d solutions to d distinct solutions modulo p^{e}, for every e. On the other hand, every solution modulo p^{e} is a solution modulo p, so that there are at most d solutions modulo p^{e}. Thus there are exactly d solutions. 3.4.7 We prove this by induction on k. If $k=1$ then this is Wilson's theorem. Suppose we know the result for $k<p-2$. Note that

$$
\begin{aligned}
(p-k-1)!k! & =k(p-k-1)!(k-1)! \\
& \equiv-(p-k)(p-k-1)!(k-1)!\bmod p \\
& =-(p-k)!(k-1)! \\
& \equiv-(-1)^{k} \quad \bmod p \\
& =(-1)^{k+1} .
\end{aligned}
$$

Thus we are done by induction on k.
3.4.8 Suppose that

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} .
$$

Then

$$
\begin{aligned}
f\left(a_{0} x\right) & =a_{0}+a_{1}\left(a_{0} x\right)+a_{2}\left(a_{0} x\right)^{2}+\cdots+a_{n}\left(a_{0} x\right)^{n} \\
& =a_{0}\left(1+a_{1} x+a_{2} a_{0} x^{2}+\cdots+a_{n} a_{0}^{n-1} x^{n}\right) \\
& =a_{0}\left(1+x\left(a_{1}+a_{2} a_{0} x+\cdots+a_{n} a_{0}^{n-1} x^{n-1}\right)\right. \\
& =a_{0}(1+x g(x)),
\end{aligned}
$$

where $g(x)$ is a polynomial of degree $n-1$. Note that $g(x) \neq 0$ as $f(x)$ is not constant. Suppose that $p_{1}, p_{2}, \ldots, p_{k}$ is a sequence of finitely many primes. Let m be the product and let l be a natural number. Then

$$
1+l m g(l m) \equiv 1 \quad \bmod m .
$$

It follows that $f\left(a_{0} l m\right)$ is not divisible by any of the primes $p_{1}, p_{2}, \ldots, p_{k}$. $g(x)$ has only finitely many zeroes, so we may choose l so that $g(l m) \neq$ 0 . By the fundamental theorem of arithmetic, it follows that $f\left(a_{0} l m\right)$ is divisible by a prime p, not belonging to the sequence $p_{1}, p_{2}, \ldots, p_{k}$. In this case $f(x) \equiv 0 \bmod p$.
3.4.10 Not quite; if $p=2$ then $-1=1=1^{2}$ is a square.

Let's assume that p is an odd prime. By Euler's criterion,

$$
\left(\frac{-1}{p}\right)=1 \quad \text { if and only if } \quad(-1)^{(p-1) / 2} \equiv 1 \quad \bmod p
$$

If $p \equiv 1 \bmod 4$ then there is an integer k such that $p=4 k+1$. In this case

$$
\frac{p-1}{2}=2 k,
$$

so that

$$
(-1)^{(p-1) / 2}=1
$$

Therefore -1 is a square modulo p if $p \equiv 1 \bmod 4$.
If p is odd then the only other possibility is that $p \equiv 3 \bmod 4$. In this case there is an integer k such that $p=4 k+3$. It follows that

$$
\frac{p-1}{2}=2 k+1,
$$

so that

$$
(-1)^{(p-1) / 2}=-1 .
$$

Thus -1 is not a square modulo p if $p \equiv 3 \bmod 4$.
3.4.11 We want to prove that if

$$
(m-1)!\equiv-1 \quad \bmod m,
$$

then m is a prime.
Suppose that m is composite. Then we may write $m=a b$, where $a>1$ and $b>1$. First suppose that we can choose a and b such that $a<b$. Then

$$
\begin{aligned}
(m-1)! & =(m-1)(m-2) \ldots(b+1) b \cdot(b-1) \ldots(a+1) \cdot a \cdot(a-1) \ldots \\
& =a b k \\
& =0 \bmod m
\end{aligned}
$$

where k is an integer.
If m is composite and we cannot choose $a \neq b$ then $m=p^{2}$ is the square of a prime. Suppose that $p>2$. Then

$$
\begin{aligned}
(m-1)! & =\left(p^{2}-1\right)\left(p^{2}-2\right) \ldots(2 p+1)(2 p)(2 p-1) \ldots(p+1) p(p-1) \ldots \\
& =p^{2} k \\
& =0 \quad \bmod m
\end{aligned}
$$

where k is an integer. The remaining case is $m=4=2^{2}$. In this case

$$
\begin{aligned}
(m-1)! & =3! \\
& =6 \\
& \neq-1 \quad \bmod m=4 .
\end{aligned}
$$

Thus if

$$
(m-1)!\equiv-1 \quad \bmod m
$$

then m is a prime.

