MODEL ANSWERS TO THE EIGHTH HOMEWORK

5.1.1.

p / q	3	5	7	11	13	17	19	23
3	0	-1	1	-1	1	-1	1	-1
5	-1	0	-1	1	-1	-1	1	-1
7	-1	-1	0	1	-1	-1	-1	1
11	1	1	-1	0	-1	-1	-1	1
13	1	-1	-1	-1	0	1	-1	1
17	-1	-1	-1	-1	1	0	1	-1
19	-1	1	1	1	-1	1	0	1
23	1	-1	-1	-1	1	-1	-1	0

Looking at the table,

$$
\left(\frac{p}{q}\right)=\left(\frac{q}{p}\right)
$$

when the pair p, q is one of

$$
\begin{aligned}
& 3,5 ; 3,13 ; 3,17 ; 5,7 ; 5,11 ; 5,13 ; 5,17 ; 5,19 ; 5,23 ; 7,13 ; \\
& 7,17 ; 11,13 ; 11,17 ; 13,17 ; 13,19 ; 13,23 ; 17,19 ; 17,23
\end{aligned}
$$

The rule is given by quadratic reciprocity; we have equality unless both p and q are congruent to 3 modulo 4.
5.1.2. If the equation

$$
x^{2} \equiv a \quad \bmod p
$$

has a solution then

$$
a^{(p-1) / 2} \equiv 1 \quad \bmod p
$$

If $p \equiv 3 \bmod 4$ then there is an integer k such that $p=4 k+3$. In this case

$$
\frac{p+1}{4}=k+1 \quad \text { and } \quad \frac{p-1}{2}=2 k+1 .
$$

Let

$$
b=a^{k+1}
$$

We check that b is a solution of the equation

$$
x^{2} \equiv a_{1} \bmod p
$$

We have

$$
\begin{aligned}
b^{2} & =\left(a^{k+1}\right)^{2} \\
& =a^{2 k+2} \\
& =a^{2 k+1} a \\
& \equiv a \quad \bmod p .
\end{aligned}
$$

Thus b is a solution of the equation

$$
x^{2} \equiv a \quad \bmod p
$$

It follows that $\pm b$ are both of the solutions to the equation

$$
x^{2} \equiv a \quad \bmod p
$$

5.1.3. We first factor

$$
\begin{aligned}
2272 & =2 \cdot 1136 \\
& =2^{2} \cdot 568 \\
& =2^{3} \cdot 284 \\
& =2^{4} \cdot 142 \\
& =2^{5} \cdot 71 .
\end{aligned}
$$

As $8 \mid 2272$ we have to check that 37 modulo 8 is congruent to one.

$$
\begin{aligned}
37 & =32+5 \\
& \equiv 5 \quad \bmod 8
\end{aligned}
$$

Thus 37 is not a quadratic residue of 2272 .
5.1.5. Let $a \in \mathbb{Z}$. Knowledge of the last n digits of a is equivalent to determining the residue class of a modulo 10^{n}. So we want to know the number of solutions of

$$
x^{2}=b \quad \bmod 10^{n} .
$$

By the Chinese remainder theorem, we have to count the number of solutions to

$$
x^{2} \equiv b \quad \bmod 5^{n} \quad \text { and } \quad x^{2} \equiv b \quad \bmod 2^{n}
$$

As we are assuming there is a solution, the number of solutions to the first equation is always two. The number of solutions to the second equation is always one if $n=1$, and always 2 if $n=2$. If $n \geq 3$ then the number of solutions is always 4 .
Thus there are 2,4 or 8 possibilities for the last n digits, according as $n=1, n=2$ or $n \geq 3$.
5.1.6. We want to solve the equation

$$
x^{2}=x \bmod 10^{3} \quad \text { that is } \quad x^{2}-x=0 \bmod 10^{3} .
$$

By the Chinese remainder theorem, we have to solve the equations

$$
x^{2}-x=0 \quad \bmod 5^{3} \quad \text { and } \quad x^{2}=x \quad \bmod 2^{3} .
$$

We first solve the equations

$$
x^{2}-x=0 \quad \bmod 5 \quad \text { and } \quad x^{2}-x=0 \quad \bmod 2 .
$$

Both equations have solutions $x=0$ and $x=1$.
Let $f(x)=x^{2}-x$. Then $f^{\prime}(x)=2 x-1$. It easy to see that all four solutions have non-zero derivative and so all solutions are non-singular. So we can lift all of these solutions to four solutions modulo 125 and modulo 8 .
Now $x=0$ and $x=1$ are always solutions, modulo any prime. So the four solutions modulo 125 and 8 are still 0 and 1 . By the Chinese remainder theorem there are four solutions, one for every possible choice of 0 and 1. Again, two of them are clear, 0 and 1 are two solutions. But they don't have four digits.
So we just have to solve

$$
x=0 \quad \bmod 125 x \quad 1 \bmod 8
$$

and

$$
x=1 \quad \bmod 125 x \quad 0 \quad \bmod 8
$$

To solve the first equation we need to find z_{1} so that

$$
125 z_{1} \equiv 1 \quad \bmod 8
$$

This reduces to

$$
5 z_{1} \equiv 1 \bmod 8
$$

This has solution $z_{1}=5$. This gives

$$
x=5 \cdot 125=625 .
$$

To solve the first equation we need to find z_{2} so that

$$
8 z_{2}=1 \quad \bmod 125
$$

This has solution $z_{2}=47$. This gives

$$
x=47 \cdot 8=376 \text {. }
$$

5.2.1. By Gauss's Lemma we need to count the number μ of elements of

$$
\left\{-2 k \left\lvert\, 1 \leq k \leq \frac{p-1}{2}\right.\right\}
$$

which are equivalent modulo p to a number in the interval $(-p / 2,0)$. Now the numbers $-2 k$ lie in the interval $(-p, 0)$. Therefore we just need to count the number of integers $-2 k$ in the interval $(-p / 2,0)$. Now $-2 k>-p / 2$ if and only if $k<p / 4$. Thus

$$
\mu=\llcorner p / 4\lrcorner
$$

We consider p modulo 8 . We have

$$
\mu= \begin{cases}2 k & \text { if } p=8 k+1 \text { or } 8 k+3 \\ 2 k+1 & \text { if } p=8 k+5 \text { of } 8 k+7\end{cases}
$$

It follows that μ is even if and only if $p \equiv 1 \bmod 8$ or $p \equiv 3 \bmod 8$ and so $(-1)^{\mu}$ is 1 if and only if $p \equiv 1 \bmod 8$ or $p \equiv 3 \bmod 8$. Therefore -2 is a quadratic residue if and only if $p \equiv 1 \bmod 8$ or $p \equiv 3 \bmod 8$. On the other hand,

$$
\begin{aligned}
\left(\frac{-2}{p}\right) & =\left(\frac{-1}{p}\right)\left(\frac{2}{p}\right) \\
& =(-1)^{(p-1) / 2}(-1)^{\left(p^{2}-1\right) / 8} .
\end{aligned}
$$

We again consider what happens modulo 8 . If $p=8 k+1$ or $8 k+5$ then the first factor is positive. If $p=8 k+1$ or $8 k+7$ the second factor is positive. Thus the product is both if $p \equiv 1 \bmod 8$ or $p \equiv 8 k+3$ $\bmod 8$.
5.2.3. We have

$$
\begin{aligned}
\left(\frac{-a}{p}\right) & =\left(\frac{-1}{p}\right)\left(\frac{a}{p}\right) \\
& =(-1)^{(p-1) / 2}\left(\frac{a}{p}\right) .
\end{aligned}
$$

On the other hand,

$$
(-1)^{(p-1) / 2}= \begin{cases}1 & \text { if } p=4 k+1 \\ -1 & \text { if } p=4 k+3\end{cases}
$$

Thus if $p \equiv 1 \bmod 4$ then a is quadratic residue if and only if $-a$ is a quadratic residue and $p \equiv 3 \bmod 4$ then exactly one of a and $-a$ is a quadratic residue.
5.2.6. Let t be the order of -4 modulo q. Then t divides $q-1$ and we want to show that $t=q-1$. Now

$$
q-1=2 p
$$

As p is prime and t divides $2 p$ it follows that either $t=1$ or $t=2$ or $t=p$ or $t=2 p$. As p is odd it follows that $p>2$ and so $q \geq 7$. Thus
$-4 \neq 1=\bmod q$ and so $t \neq 1$.

$$
(-4)^{2}=16
$$

If this is equivalent to 1 modulo q then $q \mid 15$ so that $q=3$ or 5 , which we have seen is not true. Thus $t \neq 2$. Suppose that $t=p$. Then

$$
\begin{aligned}
\left(\frac{-4}{q}\right) & =(-4)^{(q-1) / 2} \\
& =(-4)^{p} \\
& =1
\end{aligned}
$$

But

$$
\begin{aligned}
\left(\frac{-4}{q}\right)= & \left(\frac{-1}{q}\right)\left(\frac{4}{q}\right) \\
& =(-1)^{(q-1) / 2}\left(\frac{2^{2}}{q}\right) \\
& =(-1)^{p} \\
& =-1,
\end{aligned}
$$

as p is odd, a contradiction.
Thus $t=2 p=q-1$ and -4 is a primitive root.
5.2.8. First note that as p and m are coprime, the numbers

$$
m \quad 2 m, \quad 3 m \quad \ldots \quad(p-2) m \quad \text { and } \quad(p-1) m
$$

are a complete residue system. Thus

$$
\begin{aligned}
\sum_{a=1}^{p}\left(\frac{m a}{p}\right) & =\sum_{a=1}^{p-1}\left(\frac{m a}{p}\right) \\
& =\sum_{a=1}^{p-1}\left(\frac{a}{p}\right)
\end{aligned}
$$

Suppose that $p=2 k+1$. Then $p-1=2 k$ and precisely k of the numbers from 1 to $p-1$ are quadratic residues and k of the numbers from 1 to $p-1$ are not quadratic residues.
It follows that

$$
\sum_{a=1}^{p-1}\left(\frac{a}{p}\right)=k-k=0
$$

