PRACTICE PROBLEMS FOR THE FIRST MIDTERM

1. Give the definition of:
(i) a divides b.
(ii) a prime number.
(iii) A Mersenne prime.
(iv) A group.
(v) A ring.
(vi) An integral domain.
(vii) The Fibonacci sequence.
(viii) $\tau(a)$.
(ix) $\sigma(a)$.
(x) The greatest common divisor.
(xi) Euclidean domain.
(xii) The least common multiple.
2. Show that if G is a set with a rule of multiplication which is associative and there is an element $e \in G$ such that $a \cdot e=a$, and there is an element b such that $a \cdot b=e$ for every $a \in G$ then G is a group.
3. Prove that the greatest common divisor of F_{m} and F_{m+1} is always one.
4. We say an integer is square-free if it is not divisible by the square of any prime.
Prove that every positive integer is uniquely the product of a squarefree number and a square. Show that there are infinitely many squarefree numbers.
5. Show that if $(b, c)=1$ then

$$
(a, b c)=(a, b)(a, c) \quad \text { and } \quad(b x+c y, b c)=(b, y)(c, x)
$$

for all integers x and y.
6. Show that

$$
(3+\sqrt{10})^{n}
$$

is a unit in $\mathbb{Z}[\sqrt{10}]$ for every $n \in \mathbb{Z}$.
7. Show that if a, b and c are natural numbers and $(a, b)=1$ then the number n of non-negative solutions of

$$
a x+b y=c,
$$

satisfies the inequality

$$
\frac{c}{a b}-1<n \leq \frac{c}{a b}+1 .
$$

