## PRACTICE PROBLEMS FOR THE FIRST MIDTERM

1. Give the definition of:
(i) The lowest common multiple of two integers, not both zero.
(ii) $a$ congruent to $b$ modulo $m$.
(iii) an equivalence relation.
(iv) a complete residue system.
(v) a reduced residue system.
(vi) Euler $\varphi$-function.
(vii) a multiplicative function
(viii) order of an integer $a$ modulo $m$.
(ix) a singular solution.
(x) a quadratic residue.
2. (a) Let $a$ and $b$ be two coprime natural numbers and let $N=$ $(a-1)(b-1)$. Show that every integer $c \geq N$ has a representation of the form $a x+b y=c$, where $x$ and $y$ are non-negative integers. Show that $N-1$ has no such representation.
(b) Show that exactly half of the integers $0,1, \ldots, N-1$ have such a representation.
3. Show that if $n>1$ then $2^{n}-1 \equiv 3 \bmod 4$. Show that if $x^{m} \equiv 3$ $\bmod 4$ then $x \equiv m \equiv 1 \bmod 2$, in which case

$$
\frac{x^{m}+1}{x+1}=x^{m-1}-x^{m-2}+\cdots-x+1
$$

is an odd integer. Conclude that the equation $2^{n}-x^{m}=1$ has no solution with $x>1, m>1$ and $n>1$.
4. Show that if $n>1$ then the sum of the integers less than $n$ and prime to $n$ is

$$
\frac{1}{2} n \varphi(n) .
$$

5. How many reduced fractions $r / s$ are there with

$$
0 \leq r<s \leq n ?
$$

6. Show that for every natural number $k$ there are infinitely many blocks of length $k$ of composite numbers.
7. State and prove the Chinese remainder theorem.
