
1. Rank one

We are going to switch freely between the holomorphic and algebraic
perspective. This is justified by the following wonderful:

Theorem 1.1 (GAGA). Fix a projective variety X over SpecC.
Then there is an equivalence of categories between the category of

coherent sheaves on X and the category of coherent analytic sheaves
on the underlying complex analytic space Xan.

Note that if the sheaves are the same then so is the cohomology. In
particular global sections are the same. Even in the case of P1 and the
structure sheaf this is quite striking. There are many more holomor-
phic functions on C than polynomial functions but every meromorphic
function on P1 is given by a rational function.

Definition 1.2. A holomorphic vector bundle E on a complex
projective variety X is a complex manifold together with a holomorphic
map π : E −→ X and an open cover {Uα } of X such that

E|Uα = π−1(Uα)

is isomorphic to the product Uα × Cr over Uα,

E|Uα - Uα × Cr

Uα,
�

-

such that on the overlap

Uαβ = Uα ∩ Uβ,

the transition functions are linear functions on Cr.
The rank of E is r.

In fact, vector bundles make sense in almost any geometric context.
One can perform any operation on vector bundles, that makes sense for
vector spaces. In particular, we can take the direct sum of two vector
bundles, tensor product, Hom, dual, etc.

Given a holomorphic vector bundle E, we get a sheaf of sections,

Definition 1.3. If E is a holomorphic vector bundle on a projective
variety X then the associated sheaf of sections is the sheaf OX(E)
which assigns to the open subset U ⊂ X the set of all holomorphic
sections,

σ : U −→ E
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Note that the sheaf of sections is a locally free sheaf of rank r, the
rank of E. Indeed, E is trivial over U then the sheaf of sections is a
direct sum of r copies of OU .

There is an equivalence of categories between the category of holo-
morphic vector bundles on X and the category of locally free holo-
morphic sheaves on X. This equivalence respects the basic operations
(direct sum, etc). The key point is that a vector bundle and a sheaf
are both determined by a cover and the (same) transition functions.

By GAGA the holomorphic sheaf OX(U) corresponds to a locally
free algebraic sheaf (which, by abuse of notation, we will use the same
symbol). Putting all this together, classifying holomorphic vector bun-
dles on X is the same as classifying locally free coherent sheaves on
X.

We recall the classification of line bundles on X, that is, rank one
vector bundles. Suppose that L is a line bundle on X. By assumption
we may find a cover {Uα } of X such that Lα ' Uα×C. On overlaps we
get a linear transformation of one dimensional vector spaces, that is, a
nowhere zero holomorphic function, a one by one invertible matrix,

fαβ : Uαβ −→ C∗.

On triple overlaps we have the following compatibility,

fαβfβγfγα = 1.

By convention fαα = 1 and fβα = f−1
αβ .

In this way we get a 1-cocycle, with values in the sheaf of nowhere
zero O∗

X holomorphic functions. Vice-versa, given a 1-cocycle σ ∈
H1(X,O∗

X), by definition we are given an open cover {Uα } of X and
nohwere zero holomorphic functions

fαβ : Uαβ −→ C∗.

subject to the rule

fαβfβγfγα = 1.

Using this data, one can construct a holomorphic vector bundle with
the given transition functions. (One can also use GAGA and construct
the associated rank one locally free sheaf on the variety X).

On the other hand, one can take two line bundles and take the tensor
product to get another line bundle. At the level of transition functions,
one is just multiplying the transition functions. The trivial line bundle
X×C, corresponding to the trivial sheaf OX , acts as the identity. The
dual line bundle, Hom(L,X×C) acts as the inverse; it is the line bundle
with transition functions the reciprocal of the transition functions of
L.
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Definition 1.4. Let X be a projective variety. The group of line bun-
dles on X is called the Picard group and is denoted Pic(X).

Theorem 1.5. If X is a projective variety then

Pic(X) ' H1(X,O∗
X).

One advantage of working over C is that there are more exact se-
quences. The exponential sequence is the short exact sequence

0 −→ Z −→ OX −→ O∗
X . −→ 0.

The map from the sheaf of holomorphic functions to the sheaf of
nowhere holomorphic functions is the exponential,

f −→ exp(2πif).

The kernel is the locally constant sheaf Z, the sheaf of integer valued
holomorphic functions. As usual, a sequence of sheaves is exact if it is
exact on stalks. Thus the exponential is surjective, as locally we can
take logs.

If we take the long exact sequence of cohomology we get

H1(X,Z) −→ H1(X,OX) −→ H1(X,O∗
X) −→ H2(X,Z).

Note that the sheaf cohomology groups

H i(X,Z)

compute the usual topological cohomology. In particular these groups
are finitely generated abelian groups. We have already observed that

H1(X,O∗
X) ' Pic(X).

On the other hand,
H1(X,OX)

is a finite dimensional vector space. The map

c1 : Pic(X) −→ H2(X,Z),

is called the first chern class. It is a group homomorphism which assigns
to every line bundle a cohomology class. If the line bundle L has a
global section,

σ ∈ H0(X,OX(L)),

we can assign the divisor D of zeroes of σ. Locally, just trivialise L and
take the divisor of zeroes of the corresponding holomorphic function.
On overlaps, the transition functions are nowhere zero holomorphic
functions, so that even if we get different holomorphic functions, we
get the same divisor of zeroes. In this case, the first chern class is the
cocycle [D] associated to the divisor D. In general, if H is an ample
divisor then L(kH) has global sections for k large enough. The first
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chern class of L is then the difference of c1(L(kH) and [kH] = k[H], by
linearity. Equivalently, every line bundle on a projective variety has a
rational section, and the first chern class is the topological class of the
divisor of zeroes minus poles of this rational section.

The kernel of the first chern class is the image of the vector space
H1(X,OX). By Hodge theory, the free part of the abelian group
H1(X,Z) is embedded as a lattice in H1(X,OX), and the quotient
is an abelian variety, a projective algebraic group.

In fact, Grothendieck gave Pic(X) the structure of a topological
group. The quotient

H1(X,OX)

H1(X,Z)

is isomorphic to Pic0(X), the connected component of the identity. The
quotient

Pic(X)

Pic0(X)

is the group of connected components of Pic(X) and it is embedded in
H2(X,Z) by the first chern class.

To every Cartier divisor D, we can associate a line bundle OX(D).
In fact the data of a Cartier divisor gives rise a to 1-cocycle, which in
turn gives rise to a line bundle. If D ≥ 0 then OX(D) comes with a
section whose zero locus is precisely D. Two divisors D1 and D2 have
isomorphic line bundles if and only if D1 ∼ D2 are linearly equivalent.
Thus the group of line bundles is isomorphic to the group of Cartier
divisors modulo linear equivalence.

Theorem 1.6. Pic(Pn) ' Z.

Proof. The sheaf cohomology group

H1(Pn,OPn) = 0.

On the other hand,
H2(Pn,Z) = Z,

generated by the class of a hyperplane. The sheaf locally free sheaf of
rank one, OPn(1) has a section with zero locus a hyperplane. Thus the
first chern class map is an isomorphism. �
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