## 10. The Tango bundle

We want construct a simple bundle of rank $n-1$ over $\mathbb{P}^{n}$ for any $n$.
Lemma 10.1 (Serre). If $E$ is a globally generated bundle of rank $r$ on $\mathbb{P}^{n}$ and $r>n$ then there is an exact sequence

$$
0 \longrightarrow \mathcal{O}_{\mathbb{P}^{n}}^{\oplus r-n} \longrightarrow E \longrightarrow F \longrightarrow 0
$$

where $F$ is a bundle of rank $n$.
Proof. As $E$ is globally generated, there is an exact sequence

$$
0 \longrightarrow K \longrightarrow H^{0}\left(\mathbb{P}^{n}, E\right) \otimes \mathcal{O}_{\mathbb{P}^{n}} \longrightarrow E \longrightarrow 0
$$

The kernel $K$ is the bundle

$$
K=\left\{(x, \sigma) \in \mathbb{P}^{n} \times H^{0}\left(\mathbb{P}^{n}, E\right) \mid \sigma(x)=0\right\} .
$$

If we projectivise we get a morphism

$$
f: \mathbb{P}(K) \longrightarrow \mathcal{O}_{\mathbb{P}^{n}} \mathbb{P}\left(\times H^{0}\left(\mathbb{P}^{n}, E\right)\right) \mathbb{P}\left(H^{0}\left(\mathbb{P}^{n}, E\right)\right)
$$

where the second map is just projection onto the second factor. The fibres of $f$ are just the zero sets of the corresponding function,

$$
f^{-1}(\sigma)=\left\{x \in \mathbb{P}^{n} \mid \sigma(x)=0\right\} .
$$

Suppose that $h^{0}\left(\mathbb{P}^{n}, E\right)=N+1$. If $m=n+N-r$ then $m$ is the dimension of $\mathbb{P}(K)$. Thus the image of $f$ has codimension at least $r-n$.

It follows that we can find a $(r-n-1)$ dimensional linear space $\mathbb{P}(V)$ which avoids the image. The composition

$$
V \otimes \mathbb{P}^{n} \longrightarrow E
$$

defines a trivial subbundle of rank $r-n$.
Corollary 10.2. If $E$ is a vector bundle of rank $r$ on $\mathbb{P}^{n}$ and $r>n$ then there is an exact sequence

$$
0 \longrightarrow \mathcal{O}_{\mathbb{P}^{n}}(a)^{\oplus r-n} \longrightarrow E \longrightarrow F \longrightarrow 0
$$

where $F$ is a bundle of rank $n$.
Lemma 10.3. Let $E$ be a globally generated bundle of rank $r$.
Then $E$ contains a trivial bundle of rank one if and only if $c_{r}(E)=0$.
Proof. One direction is clear. If there is a short exact sequence

$$
0 \longrightarrow \mathcal{O}_{\mathbb{P}^{n}} \longrightarrow E \longrightarrow F \longrightarrow 0
$$

where $F$ is a vector bundle then $c(E)=c(F)$ so that $c_{r}(E)=0$.

For the other direction we may assume that $r \leq n$. We consider the same exact sequence as before,

$$
0 \longrightarrow K \longrightarrow H^{0}\left(\mathbb{P}^{n}, E\right) \otimes \mathcal{O}_{\mathbb{P}^{n}} \longrightarrow E \longrightarrow 0
$$

As before we get we get a morphism

$$
f: \mathbb{P}(K) \longrightarrow \mathbb{P}\left(H^{0}\left(\mathbb{P}^{n}, E\right)\right)
$$

Suppose that $f$ is surjective. Suppose that $h^{0}\left(\mathbb{P}^{n}, E\right)=N+1$. If $m=n+N-r$ then $m$ is the dimension on $\mathbb{P}(K)$ and so the general fibre $Z=f^{-1}(\sigma)$ has dimension $n-r$. But then a general section vanishes in codimension $r$, a contradiction. It follows that $f$ is not surjective. If $\sigma$ is not in the image then $\sigma$ is nowhwere vanishing, so that $\sigma$ defines a trivial sub line bundle.

We now turn to Tango's construction. We start with the Euler sequence,

$$
0 \longrightarrow \mathcal{O}_{\mathbb{P}^{n}}(-1) \longrightarrow \mathcal{O}_{\mathbb{P}^{n}}^{\oplus n+1} \longrightarrow T_{\mathbb{P}^{n}}(-1) \longrightarrow 0 .
$$

Suppose we take the $\wedge^{n-1}$ th power of this sequence.

$$
0 \longrightarrow \bigwedge^{n-2} T_{\mathbb{P}^{n}}(-1) \otimes \mathcal{O}_{\mathbb{P}^{n}}(-1) \longrightarrow \mathcal{O}_{\mathbb{P}^{n}}^{\oplus\binom{n+1}{n-1}} \longrightarrow \bigwedge^{n-1} T_{\mathbb{P}^{n}}(-1) \longrightarrow 0
$$

Now for the last term we have

$$
\begin{aligned}
\bigwedge^{n-1} T_{\mathbb{P}^{n}}(-1) & \simeq \Omega_{\mathbb{P}^{n}}^{1}(1) \otimes \operatorname{det} T_{\mathbb{P}^{n}}(-1) \\
& \simeq \Omega_{\mathbb{P}^{n}}^{2}(2)
\end{aligned}
$$

Let

$$
E=\left(\bigwedge^{n-2} T_{\mathbb{P}^{n}}(-1) \otimes \mathcal{O}_{\mathbb{P}^{n}}(-1)\right)^{*}
$$

The dual sequence to the sequence above is

$$
0 \longrightarrow T_{\mathbb{P}^{n}}(-2) \longrightarrow \mathcal{O}_{\mathbb{P}^{n}}^{\oplus\binom{n+1}{2}} \longrightarrow E \longrightarrow 0
$$

Thus $E$ is globally generated of rank

$$
r=\binom{n+1}{2}-n=\binom{n}{2}
$$

If $n \geq 3$ then $r \geq n$ and so there is an exact sequence

$$
0 \longrightarrow \mathcal{O}_{\mathbb{P}^{n}}^{\oplus r-n} \longrightarrow \underset{2}{ } E \longrightarrow E^{\prime} \longrightarrow 0,
$$

for some vector bundle $E^{\prime}$ of rank $n . E^{\prime}$ is globally generated as it is a quotient of a globally generated vector bundle. The top chern of $E^{\prime}$ is

$$
\begin{aligned}
c_{n}\left(E^{\prime}\right) & =c_{n}(E) \\
& =0 .
\end{aligned}
$$

Thus $E^{\prime}$ contains a trivial subbundle. Let $F$ be the quotient,

$$
0 \longrightarrow \mathcal{O}_{\mathbb{P}^{n}} \longrightarrow E^{\prime} \longrightarrow F \longrightarrow 0 .
$$

Thus $F$ is a vector bundle of rank $n-1$ with total chern class,

$$
\begin{aligned}
c(F) & =c\left(E^{\prime}\right) \\
& =c(E) \\
& =\frac{1}{c\left(T_{\mathbb{P}^{n}}(-2)\right.} \\
& =\frac{1-2 h}{(1-h)^{n+1}} .
\end{aligned}
$$

Finally we show that $F$ is simple.
We will need the following three exact sequences:

$$
\begin{gathered}
0 \longrightarrow T_{\mathbb{P}^{n}}(-2) \longrightarrow \mathcal{O}_{\mathbb{P}^{n}}^{\oplus\binom{n+1}{2}} \longrightarrow E \longrightarrow 0 . \\
0 \longrightarrow \mathcal{O}_{\mathbb{P}^{n}}^{\oplus r-n} \longrightarrow E \longrightarrow E^{\prime} \longrightarrow 0
\end{gathered}
$$

and

$$
0 \longrightarrow \mathcal{O}_{\mathbb{P}^{n}} \longrightarrow E^{\prime} \longrightarrow F \longrightarrow 0 .
$$

If we take the dual of the last exact sequence and tensor by $F$ then we get

$$
h^{0}\left(\mathbb{P}^{n}, F^{*} \otimes F\right) \leq h^{0}\left(\mathbb{P}^{n}, E^{* *} \otimes F\right) .
$$

Now take the dual of the second sequence and tensor by $F$ to get

$$
h^{0}\left(\mathbb{P}^{n}, E^{\prime *} \otimes F\right) \leq h^{0}\left(\mathbb{P}^{n}, E^{*} \otimes F\right)
$$

So we are down to showing:

$$
h^{0}\left(\mathbb{P}^{n}, E^{*} \otimes F\right) \leq 1
$$

Now tensor the second and third exact sequences with $E^{*}$ to get

$$
0 \longrightarrow E^{*} \longrightarrow E^{*} \otimes E^{\prime} \longrightarrow E^{*} \otimes F \longrightarrow 0,
$$

and

$$
0 \longrightarrow E^{* \oplus r-n} \longrightarrow E^{*} \otimes E \longrightarrow E^{*} \otimes E^{\prime} \longrightarrow 0
$$

Thus it remains to show that $E$ is simple and $h^{1}\left(\mathbb{P}^{n}, E^{*}\right)=0$.

Now

$$
\begin{aligned}
E^{*} & =\bigwedge^{n-2} T_{\mathbb{P}^{n}}(-1) \otimes \mathcal{O}_{\mathbb{P}^{n}}(-1) \\
& \simeq \bigwedge^{2} \Omega_{\mathbb{P}^{n}}^{1}(1) \otimes \operatorname{det} T_{\mathbb{P}^{n}}(-1) \otimes \mathcal{O}_{\mathbb{P}^{n}}(-1) \\
& \simeq \Omega_{\mathbb{P}^{n}}^{2}(2) .
\end{aligned}
$$

Thus

$$
h^{0}\left(\mathbb{P}^{n}, E^{*}\right)=h^{1}\left(\mathbb{P}^{n}, E^{*}\right)=0
$$

If we tensor the first exact sequence with $E^{*}$ then we get

$$
0 \longrightarrow E^{*} \otimes T_{\mathbb{P}^{n}}(-2) \longrightarrow E^{* \oplus\binom{n+1}{2}} \longrightarrow E^{*} \otimes E \longrightarrow 0
$$

Taking the long exact sequence of cohomology gives

$$
h^{0}\left(\mathbb{P}^{n}, E^{*} \otimes E\right)=h^{1}\left(\mathbb{P}^{n}, E^{*} \otimes T_{\mathbb{P}^{n}}(-2)\right)
$$

Finally we tensor the Euler sequence with $E^{*}(-1)$ to get

$$
0 \longrightarrow E^{*}(-2) \longrightarrow E^{* \oplus n+1} \longrightarrow E * \otimes T_{\mathbb{P}^{n}}(-2) \longrightarrow 0 .
$$

Taking the long exact sequence of cohomology, we are done, provided,

$$
h^{1}\left(\mathbb{P}^{n}, E^{*}(-1)\right)=0 \quad \text { and } \quad h^{2}\left(\mathbb{P}^{n}, E^{*}(-2)\right)=0 .
$$

This follows from the Bott formula, since

$$
E^{*}=\Omega_{\mathbb{P}^{n}}^{1} .
$$

Putting all of this together we have
Theorem 10.4 (Tango). For every $n$ there is a simple vector bundle of rank $(n-1) F$ on $\mathbb{P}^{n}$ with

$$
c(F)=\frac{1-2 h}{(1-h)^{n+1}} .
$$

