12. EXAMPLES
We start with a useful:

Lemma 12.1. Let E be a rank two vector bundle on P™ and let o be a
global section of E such that the local complete intersection Z(o) =Y
has codimension two.

Then E is decomposable if and only if Y is a complete intersection.

Proof. Suppose that E is decomposable. Then E ~ Opn(a) @ Opn(b)
for some a and b. Then o = (f,g) where f and g are homogeneous
polynomials of degrees a and b. In this case Y = Z(f) N Z(g).

Now suppose that Y is the intersection of the hypersurfaces W and
V. Then there are homogeneous polynomials f and g of degrees a and

b such that W = Z(f) and V = Z(g). Thus
f € H°(P", Opn(a)) and g € H(P", Opn(D)).
The Koszul complex of the section
o= (f,g9) € H'(P", Opn(a)) ® H (P", Opn (b))

gives the short exact sequence

0 — Opn(—(a+ b)) — Opn(—(a)) @ Opn(—(b)) — Zy — 0.
Thus we get a non-zero element of

Extgn (Zy, Opn(—(a + b)) ~ H°(Y, Oy).

It is enough to show that the last group is one dimensional. In this
case there is only one non-trivial extension of Zy by Opn(—(a + b)), so
that E is isomorphic to Opn(—(a)) ® Opn(—(b)).

Claim 12.2. h°(Y,Oy) =1 for every complete intersection Y of codi-
mension two in P*, n > 3.

Proof of (12.2)). From the long exact sequence of cohomology associ-
ated to

0 — Opn(—(a+ b)) — Opn(—(a)) ® Opn(—(b)) — Zy — 0,
we see that
RO(Y,Iy) = R} (Y, Iy) = 0.
From the long exact sequence of cohomology associated to
0—Zy —P"— 0Oy —0

we see that

RO(Y, Oy) = h°(P", Opn) = 1 O



Lemma 12.3. Let Y be a local complete intersection in P™.
Then
Wy >~ wpn @ det Ny/]pm.
In particular det Ny pn is the restriction of a line bundle if and only if
wy 1s the restriction of a line bundle.

Proof. The first result is adjunction. The second result follows, as
wpr =~ Opn(—n — 1). O

It is not hard to write down local complete intersection curves in P3,
who canonical divisor is the restriction of a line bundle on P? and yet
the curve is not a complete intersection.

We start with an easier case.

Example 12.4. Let Y be m reduced points pi,pa, ..., Pm in P2.

As Y is zero dimensional it follows that every vector bundle on Y
is trivial. Recall that we can apply Serre’s result in P? provided that
k < 3. Thus we get vector bundles £ of rank two on P2, which are
extensions:

0— Op2 — E — Iy(k) — 0.

Note that E has Chern classes
a(F)=k
c2(E) =m.
Suppose that £ = 1. If L is a line that does not meet Y then the
exact sequence above reduces to
0— Op — E|p — Or(1) — 0.
This sequence splits, as
HY(P', Op:(—1)) = 0.
Thus the splitting type is (1,0) and this is the generic splitting type.
If £ = 2 then this argument breaks down as
H (P!, O (—2)) # 0.

In fact the generic splitting type is (1,1).

If L is a line which meets one point z; of S then E|; has a section
0| which vanishes at z; and nowhere else. In this case, the restriction
of the short exact sequence above becomes

0— Op(1) — E|p — O(1) — 0.

This splits, as
HY(P', Op) = 0,
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so that the splitting type of L is (1,1). Thus the generic splitting type
must be (1,1).

In the case £ = 2 the set of jump lines is precisely the set of lines
which meet two or more points of Y. The case kK = 1 is more subtle

and in fact the set of jump lines is a curve of degree m — 1 in the dual
P2

Example 12.5. Let Y be a union of d > 1 distinct lines Ly, Lo, ..., Ly
in P3.

As L; = H; NG} is the intersection of two hyperplanes it follows that

Nyyps|r, = Np, ps

= Ny, ps|L, ® Neg, ps
— Opl(l) D Opl(l)
It follows that Ny ps|r, = 012. and so Ny ps = Oy(2). By Serre’s con-

struction there is a rank two vector indecomposable bundle £, which
fits into an exact sequence

L;

0— Ops — E —Iy(2) — 0,
with Chern classes
a(F)=2
co(E) =d.

If we restrict E to a line that meets one of the L; transversally,
arguing as above, we see that the generic splitting type is (1,1). If L
is a line that meets two of the lines of Y transversally then the L is a
jumping line, so that the locus of jumping lines contains a codimension
two subvariety of G(1, 3).

Example 12.6. Let Y be the union of r elliptic curves C; of degree d;
in P3.
For any such curve, there is an exact sequence
0 — Te — Tps —> Ngyps — 0.
As the tangent bundle of an elliptic curve is trivial it follows that
det Neyps ~ det Tps |
= 0Oc(4).

Therefore

Ny /ps :3 Oy (4).



There is then an associated rank two vector bundle £ with
Cl(E) =4

CQ(E) = Z dz
As a special case, if we take two plane elliptic curves C; and Cj
sitting in different planes H; and Hs then d; = dy = 3 and F' = E(—2)
is a rank two vector bundle with

Cl(F) =0
CQ(F) =2.
Example 12.7. Let Y be the union of r disjoint conics D1, Ds, ..., D,

in P3.
If D C H is a conic sitting in a plane H then there is an exact
sequence
0 — Np/u — Npps — Nyps|p — 0.
It follows that
det Np/ps ~ Np/u @ Nyps|p
~ Op(2) ® Op(1)
= Op(3).
and so
Nyps = Oy (3).
The rank two vector bundle F associated to Y has Chern classes
a(E)=3
co(E) = 2r.
The generic splitting type is (2, 1).

Example 12.8. Now suppose we pick a union 'Y of complete intersec-
tion curves Y; in P3.

Pick r pairs of natural numbers (a;, b;), with a; + b; = p constant.
Pick polynomials

fl' S HO(P?), O[pﬁ(a,i)) and g; € HO(]P)?’, OpB(bl))

Let Y; = Z(f;) N Z(g;). If we pick fi, fo,..., fr and ¢1,99,..., 9, ap-
propriately, Y7, Ys, ..., Y, are smooth pairwise disjoint curves. Let Y
be their union.
The Koszul complex for Y; is
0— OPB(—(CLZ' + bz)) — O]IDS(—CLZ‘) D Op:‘s(—bo — Iyl — 0.
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It follows that
det ]Vyi/[gn3 x~ OIP3<_<ai + bl))

Y;

}/i.

Thus
det Ny/[pS = Oy(p)

The associated rank 2 vector bundle E associated to Y has
C1 (E) =P

CQ(E) = Z albl
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