12. Examples

We start with a useful:

Lemma 12.1. Let E be a rank two vector bundle on \mathbb{P}^n and let σ be a global section of E such that the local complete intersection $Z(\sigma) = Y$ has codimension two.

Then E is decomposable if and only if Y is a complete intersection.

Proof. Suppose that E is decomposable. Then $E \sim \mathcal{O}_{\mathbb{P}^n}(a) \oplus \mathcal{O}_{\mathbb{P}^n}(b)$ for some a and b. Then $\sigma = (f,g)$ where f and g are homogeneous polynomials of degrees a and b. In this case $Y = Z(f) \cap Z(g)$.

Now suppose that Y is the intersection of the hypersurfaces W and V. Then there are homogeneous polynomials f and g of degrees a and b such that W = Z(f) and V = Z(g). Thus

$$f \in H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(a))$$
 and $g \in H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(b)).$

The Koszul complex of the section

$$\sigma = (f,g) \in H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(a)) \oplus H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(b))$$

gives the short exact sequence

$$0 \longrightarrow \mathcal{O}_{\mathbb{P}^n}(-(a+b)) \longrightarrow \mathcal{O}_{\mathbb{P}^n}(-(a)) \oplus \mathcal{O}_{\mathbb{P}^n}(-(b)) \longrightarrow \mathcal{I}_Y \longrightarrow 0.$$

Thus we get a non-zero element of

$$\operatorname{Ext}^{1}_{\mathbb{P}^{n}}(\mathcal{I}_{Y}, \mathcal{O}_{\mathbb{P}^{n}}(-(a+b))) \simeq H^{0}(Y, \mathcal{O}_{Y})$$

It is enough to show that the last group is one dimensional. In this case there is only one non-trivial extension of \mathcal{I}_Y by $\mathcal{O}_{\mathbb{P}^n}(-(a+b))$, so that E is isomorphic to $\mathcal{O}_{\mathbb{P}^n}(-(a)) \oplus \mathcal{O}_{\mathbb{P}^n}(-(b))$.

Claim 12.2. $h^0(Y, \mathcal{O}_Y) = 1$ for every complete intersection Y of codimension two in \mathbb{P}^n , $n \geq 3$.

Proof of (12.2). From the long exact sequence of cohomology associated to

$$0 \longrightarrow \mathcal{O}_{\mathbb{P}^n}(-(a+b)) \longrightarrow \mathcal{O}_{\mathbb{P}^n}(-(a)) \oplus \mathcal{O}_{\mathbb{P}^n}(-(b)) \longrightarrow \mathcal{I}_Y \longrightarrow 0,$$

we see that

$$h^0(Y, \mathcal{I}_Y) = h^1(Y, \mathcal{I}_Y) = 0.$$

From the long exact sequence of cohomology associated to

$$0 \longrightarrow \mathcal{I}_Y \longrightarrow \mathbb{P}^n \longrightarrow \mathcal{O}_Y \longrightarrow 0$$

we see that

$$h^0(Y, \mathcal{O}_Y) = h^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}) = 1$$

Lemma 12.3. Let Y be a local complete intersection in \mathbb{P}^n . Then

$$\omega_Y \simeq \omega_{\mathbb{P}^n} \otimes \det N_{Y/\mathbb{P}^n}.$$

In particular det N_{Y/\mathbb{P}^n} is the restriction of a line bundle if and only if ω_Y is the restriction of a line bundle.

Proof. The first result is adjunction. The second result follows, as

$$\omega_{\mathbb{P}^n} \simeq \mathcal{O}_{\mathbb{P}^n}(-n-1).$$

It is not hard to write down local complete intersection curves in \mathbb{P}^3 , who canonical divisor is the restriction of a line bundle on \mathbb{P}^3 and yet the curve is not a complete intersection.

We start with an easier case.

Example 12.4. Let Y be m reduced points p_1, p_2, \ldots, p_m in \mathbb{P}^2 .

As Y is zero dimensional it follows that every vector bundle on Y is trivial. Recall that we can apply Serre's result in \mathbb{P}^2 provided that k < 3. Thus we get vector bundles E of rank two on \mathbb{P}^2 , which are extensions:

$$0 \longrightarrow \mathcal{O}_{\mathbb{P}^2} \longrightarrow E \longrightarrow \mathcal{I}_Y(k) \longrightarrow 0.$$

Note that E has Chern classes

$$c_1(E) = k$$
$$c_2(E) = m.$$

Suppose that k = 1. If L is a line that does not meet Y then the exact sequence above reduces to

$$0 \longrightarrow \mathcal{O}_L \longrightarrow E|_L \longrightarrow \mathcal{O}_L(1) \longrightarrow 0.$$

This sequence splits, as

$$H^1(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(-1)) = 0.$$

Thus the splitting type is (1,0) and this is the generic splitting type.

If k = 2 then this argument breaks down as

$$H^1(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(-2)) \neq 0.$$

In fact the generic splitting type is (1, 1).

If L is a line which meets one point x_i of S then $E|_L$ has a section $\sigma|_L$ which vanishes at x_i and nowhere else. In this case, the restriction of the short exact sequence above becomes

$$0 \longrightarrow \mathcal{O}_L(1) \longrightarrow E|_L \longrightarrow \mathcal{O}_L(1) \longrightarrow 0.$$

This splits, as

$$H^1(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}) = 0,$$

so that the splitting type of L is (1, 1). Thus the generic splitting type must be (1, 1).

In the case k = 2 the set of jump lines is precisely the set of lines which meet two or more points of Y. The case k = 1 is more subtle and in fact the set of jump lines is a curve of degree m - 1 in the dual \mathbb{P}^2 .

Example 12.5. Let Y be a union of d > 1 distinct lines L_1, L_2, \ldots, L_d in \mathbb{P}^3 .

As $L_i = H_i \cap G_i$ is the intersection of two hyperplanes it follows that

$$N_{Y/\mathbb{P}^3}|_{L_i} = N_{L_i/\mathbb{P}^3}$$
$$= N_{H_i/\mathbb{P}^3}|_{L_i} \oplus N_{G_i/\mathbb{P}^3}|_{L_i}$$
$$= \mathcal{O}_{\mathbb{P}^1}(1) \oplus \mathcal{O}_{\mathbb{P}^1}(1).$$

It follows that $N_{Y/\mathbb{P}^3}|_{L_i} = \mathcal{O}_1 2$. and so $N_{Y/\mathbb{P}^3} = \mathcal{O}_Y(2)$. By Serre's construction there is a rank two vector indecomposable bundle E, which fits into an exact sequence

$$0 \longrightarrow \mathcal{O}_{\mathbb{P}^3} \longrightarrow E \longrightarrow \mathcal{I}_Y(2) \longrightarrow 0,$$

with Chern classes

$$c_1(E) = 2$$
$$c_2(E) = d.$$

If we restrict E to a line that meets one of the L_i transversally, arguing as above, we see that the generic splitting type is (1, 1). If Lis a line that meets two of the lines of Y transversally then the L is a jumping line, so that the locus of jumping lines contains a codimension two subvariety of $\mathbb{G}(1, 3)$.

Example 12.6. Let Y be the union of r elliptic curves C_i of degree d_i in \mathbb{P}^3 .

For any such curve, there is an exact sequence

 $0 \longrightarrow T_C \longrightarrow T_{\mathbb{P}^3} \longrightarrow N_{C/\mathbb{P}^3} \longrightarrow 0.$

As the tangent bundle of an elliptic curve is trivial it follows that

$$\det N_{C/\mathbb{P}^3} \simeq \det T_{\mathbb{P}^3}|_C$$
$$= \mathcal{O}_C(4).$$

Therefore

$$N_{Y/\mathbb{P}^3} = \mathcal{O}_Y(4).$$

There is then an associated rank two vector bundle E with

$$c_1(E) = 4$$
$$c_2(E) = \sum d_i$$

As a special case, if we take two plane elliptic curves C_1 and C_2 sitting in different planes H_1 and H_2 then $d_1 = d_2 = 3$ and F = E(-2) is a rank two vector bundle with

$$c_1(F) = 0$$
$$c_2(F) = 2$$

Example 12.7. Let Y be the union of r disjoint conics D_1, D_2, \ldots, D_r in \mathbb{P}^3 .

If $D \subset H$ is a conic sitting in a plane H then there is an exact sequence

$$0 \longrightarrow N_{D/H} \longrightarrow N_{D/\mathbb{P}^3} \longrightarrow N_{H/\mathbb{P}^3}|_D \longrightarrow 0.$$

It follows that

$$\det N_{D/\mathbb{P}^3} \simeq N_{D/H} \otimes N_{H/\mathbb{P}^3}|_D$$
$$\simeq \mathcal{O}_D(2) \otimes \mathcal{O}_D(1)$$
$$= \mathcal{O}_D(3).$$

and so

$$N_{Y/\mathbb{P}^3} = \mathcal{O}_Y(3).$$

The rank two vector bundle E associated to Y has Chern classes

$$c_1(E) = 3$$
$$c_2(E) = 2r.$$

The generic splitting type is (2, 1).

Example 12.8. Now suppose we pick a union Y of complete intersection curves Y_i in \mathbb{P}^3 .

Pick r pairs of natural numbers (a_i, b_i) , with $a_i + b_i = p$ constant. Pick polynomials

$$f_i \in H^0(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(a_i))$$
 and $g_i \in H^0(\mathbb{P}^3, \mathcal{O}_{\mathbb{P}^3}(b_i)).$

Let $Y_i = Z(f_i) \cap Z(g_i)$. If we pick f_1, f_2, \ldots, f_r and g_1, g_2, \ldots, g_r appropriately, Y_1, Y_2, \ldots, Y_r are smooth pairwise disjoint curves. Let Y be their union.

The Koszul complex for Y_i is

$$0 \longrightarrow \mathcal{O}_{\mathbb{P}^3}(-(a_i+b_i)) \longrightarrow \mathcal{O}_{\mathbb{P}^3}(-a_i) \oplus \mathcal{O}_{\mathbb{P}^3}(-b_i) \longrightarrow \mathcal{I}_{Y_i} \longrightarrow 0.$$

It follows that

$$\det N_{Y_i/\mathbb{P}^3} \simeq \mathcal{O}_{\mathbb{P}^3}(-(a_i+b_i))|_{Y_i}$$
$$\simeq \mathcal{O}_{\mathbb{P}^3}(-p)|_{Y_i}.$$

Thus

$$\det N_{Y/\mathbb{P}^3} = \mathcal{O}_Y(p).$$

The associated rank 2 vector bundle E associated to Y has

$$c_1(E) = p$$

$$c_2(E) = \sum a_i b_i.$$