12. Examples

We start with a useful:
Lemma 12.1. Let E be a rank two vector bundle on \mathbb{P}^{n} and let σ be a global section of E such that the local complete intersection $Z(\sigma)=Y$ has codimension two.

Then E is decomposable if and only if Y is a complete intersection.
Proof. Suppose that E is decomposable. Then $E \sim \mathcal{O}_{\mathbb{P}^{n}}(a) \oplus \mathcal{O}_{\mathbb{P}^{n}}(b)$ for some a and b. Then $\sigma=(f, g)$ where f and g are homogeneous polynomials of degrees a and b. In this case $Y=Z(f) \cap Z(g)$.

Now suppose that Y is the intersection of the hypersurfaces W and V. Then there are homogeneous polynomials f and g of degrees a and b such that $W=Z(f)$ and $V=Z(g)$. Thus

$$
f \in H^{0}\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(a)\right) \quad \text { and } \quad g \in H^{0}\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(b)\right)
$$

The Koszul complex of the section

$$
\sigma=(f, g) \in H^{0}\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(a)\right) \oplus H^{0}\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}(b)\right)
$$

gives the short exact sequence

$$
0 \longrightarrow \mathcal{O}_{\mathbb{P}^{n}}(-(a+b)) \longrightarrow \mathcal{O}_{\mathbb{P}^{n}}(-(a)) \oplus \mathcal{O}_{\mathbb{P}^{n}}(-(b)) \longrightarrow \mathcal{I}_{Y} \longrightarrow 0 .
$$

Thus we get a non-zero element of

$$
\operatorname{Ext}_{\mathbb{P}^{n}}^{1}\left(\mathcal{I}_{Y}, \mathcal{O}_{\mathbb{P}^{n}}(-(a+b))\right) \simeq H^{0}\left(Y, \mathcal{O}_{Y}\right)
$$

It is enough to show that the last group is one dimensional. In this case there is only one non-trivial extension of \mathcal{I}_{Y} by $\mathcal{O}_{\mathbb{P}^{n}}(-(a+b))$, so that E is isomorphic to $\mathcal{O}_{\mathbb{P}^{n}}(-(a)) \oplus \mathcal{O}_{\mathbb{P}^{n}}(-(b))$.

Claim 12.2. $h^{0}\left(Y, \mathcal{O}_{Y}\right)=1$ for every complete intersection Y of codimension two in $\mathbb{P}^{n}, n \geq 3$.

Proof of 12.2 . From the long exact sequence of cohomology associated to

$$
0 \longrightarrow \mathcal{O}_{\mathbb{P}^{n}}(-(a+b)) \longrightarrow \mathcal{O}_{\mathbb{P}^{n}}(-(a)) \oplus \mathcal{O}_{\mathbb{P}^{n}}(-(b)) \longrightarrow \mathcal{I}_{Y} \longrightarrow 0,
$$

we see that

$$
h^{0}\left(Y, \mathcal{I}_{Y}\right)=h^{1}\left(Y, \mathcal{I}_{Y}\right)=0 .
$$

From the long exact sequence of cohomology associated to

$$
0 \longrightarrow \mathcal{I}_{Y} \longrightarrow \mathbb{P}^{n} \longrightarrow \mathcal{O}_{Y} \longrightarrow 0
$$

we see that

$$
h^{0}\left(Y, \mathcal{O}_{Y}\right)=h^{0}\left(\mathbb{P}^{n}, \mathcal{O}_{\mathbb{P}^{n}}\right)=1
$$

Lemma 12.3. Let Y be a local complete intersection in \mathbb{P}^{n}.
Then

$$
\omega_{Y} \simeq \omega_{\mathbb{P}^{n}} \otimes \operatorname{det} N_{Y / \mathbb{P}^{n}}
$$

In particular det $N_{Y / \mathbb{P}^{n}}$ is the restriction of a line bundle if and only if ω_{Y} is the restriction of a line bundle.
Proof. The first result is adjunction. The second result follows, as

$$
\omega_{\mathbb{P}^{n}} \simeq \mathcal{O}_{\mathbb{P}^{n}}(-n-1)
$$

It is not hard to write down local complete intersection curves in \mathbb{P}^{3}, who canonical divisor is the restriction of a line bundle on \mathbb{P}^{3} and yet the curve is not a complete intersection.

We start with an easier case.
Example 12.4. Let Y be m reduced points $p_{1}, p_{2}, \ldots, p_{m}$ in \mathbb{P}^{2}.
As Y is zero dimensional it follows that every vector bundle on Y is trivial. Recall that we can apply Serre's result in \mathbb{P}^{2} provided that $k<3$. Thus we get vector bundles E of rank two on \mathbb{P}^{2}, which are extensions:

$$
0 \longrightarrow \mathcal{O}_{\mathbb{P}^{2}} \longrightarrow E \longrightarrow \mathcal{I}_{Y}(k) \longrightarrow 0 .
$$

Note that E has Chern classes

$$
\begin{aligned}
& c_{1}(E)=k \\
& c_{2}(E)=m
\end{aligned}
$$

Suppose that $k=1$. If L is a line that does not meet Y then the exact sequence above reduces to

$$
\left.0 \longrightarrow \mathcal{O}_{L} \longrightarrow E\right|_{L} \longrightarrow \mathcal{O}_{L}(1) \longrightarrow 0
$$

This sequence splits, as

$$
H^{1}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(-1)\right)=0
$$

Thus the splitting type is $(1,0)$ and this is the generic splitting type.
If $k=2$ then this argument breaks down as

$$
H^{1}\left(\mathbb{P}^{1}, \mathcal{O}_{\mathbb{P}^{1}}(-2)\right) \neq 0
$$

In fact the generic splitting type is $(1,1)$.
If L is a line which meets one point x_{i} of S then $\left.E\right|_{L}$ has a section $\left.\sigma\right|_{L}$ which vanishes at x_{i} and nowhere else. In this case, the restriction of the short exact sequence above becomes

$$
\left.0 \longrightarrow \mathcal{O}_{L}(1) \longrightarrow E\right|_{L} \longrightarrow \mathcal{O}_{L}(1) \longrightarrow 0
$$

This splits, as

$$
H^{1}\left(\mathbb{P}^{1}, \underset{2}{\mathcal{O}_{\mathbb{P}^{1}}}\right)=0,
$$

so that the splitting type of L is $(1,1)$. Thus the generic splitting type must be $(1,1)$.

In the case $k=2$ the set of jump lines is precisely the set of lines which meet two or more points of Y. The case $k=1$ is more subtle and in fact the set of jump lines is a curve of degree $m-1$ in the dual \mathbb{P}^{2}.

Example 12.5. Let Y be a union of $d>1$ distinct lines $L_{1}, L_{2}, \ldots, L_{d}$ in \mathbb{P}^{3}.

As $L_{i}=H_{i} \cap G_{i}$ is the intersection of two hyperplanes it follows that

$$
\begin{aligned}
\left.N_{Y / \mathbb{P}^{3}}\right|_{L_{i}} & =N_{L_{i} / \mathbb{P}^{3}} \\
& =\left.\left.N_{H_{i} / \mathbb{P}^{3}}\right|_{L_{i}} \oplus N_{G_{i} / \mathbb{P}^{3}}\right|_{L_{i}} \\
& =\mathcal{O}_{\mathbb{P}^{1}}(1) \oplus \mathcal{O}_{\mathbb{P}^{1}}(1) .
\end{aligned}
$$

It follows that $\left.N_{Y / \mathbb{P}^{3}}\right|_{L_{i}}=\mathcal{O}_{1} 2$. and so $N_{Y / \mathbb{P}^{3}}=\mathcal{O}_{Y}(2)$. By Serre's construction there is a rank two vector indecomposable bundle E, which fits into an exact sequence

$$
0 \longrightarrow \mathcal{O}_{\mathbb{P}^{3}} \longrightarrow E \longrightarrow \mathcal{I}_{Y}(2) \longrightarrow 0,
$$

with Chern classes

$$
\begin{aligned}
& c_{1}(E)=2 \\
& c_{2}(E)=d .
\end{aligned}
$$

If we restrict E to a line that meets one of the L_{i} transversally, arguing as above, we see that the generic splitting type is $(1,1)$. If L is a line that meets two of the lines of Y transversally then the L is a jumping line, so that the locus of jumping lines contains a codimension two subvariety of $\mathbb{G}(1,3)$.

Example 12.6. Let Y be the union of r elliptic curves C_{i} of degree d_{i} in \mathbb{P}^{3}.

For any such curve, there is an exact sequence

$$
0 \longrightarrow T_{C} \longrightarrow T_{\mathbb{P}^{3}} \longrightarrow N_{C / \mathbb{P}^{3}} \longrightarrow 0 .
$$

As the tangent bundle of an elliptic curve is trivial it follows that

$$
\begin{aligned}
\operatorname{det} N_{C / \mathbb{P}^{3}} & \left.\simeq \operatorname{det} T_{\mathbb{P}^{3}}\right|_{C} \\
& =\mathcal{O}_{C}(4) .
\end{aligned}
$$

Therefore

$$
N_{Y / \mathbb{P}^{3}}=\mathcal{O}_{3}(4)
$$

There is then an associated rank two vector bundle E with

$$
\begin{aligned}
& c_{1}(E)=4 \\
& c_{2}(E)=\sum d_{i} .
\end{aligned}
$$

As a special case, if we take two plane elliptic curves C_{1} and C_{2} sitting in different planes H_{1} and H_{2} then $d_{1}=d_{2}=3$ and $F=E(-2)$ is a rank two vector bundle with

$$
\begin{aligned}
& c_{1}(F)=0 \\
& c_{2}(F)=2 .
\end{aligned}
$$

Example 12.7. Let Y be the union of r disjoint conics $D_{1}, D_{2}, \ldots, D_{r}$ in \mathbb{P}^{3}.

If $D \subset H$ is a conic sitting in a plane H then there is an exact sequence

$$
\left.0 \longrightarrow N_{D / H} \longrightarrow N_{D / \mathbb{P}^{3}} \longrightarrow N_{H / \mathbb{P}^{3}}\right|_{D} \longrightarrow 0 .
$$

It follows that

$$
\begin{aligned}
\operatorname{det} N_{D / \mathbb{P}^{3}} & \left.\simeq N_{D / H} \otimes N_{H / \mathbb{P}^{3}}\right|_{D} \\
& \simeq \mathcal{O}_{D}(2) \otimes \mathcal{O}_{D}(1) \\
& =\mathcal{O}_{D}(3) .
\end{aligned}
$$

and so

$$
N_{Y / \mathbb{P}^{3}}=\mathcal{O}_{Y}(3) .
$$

The rank two vector bundle E associated to Y has Chern classes

$$
\begin{aligned}
& c_{1}(E)=3 \\
& c_{2}(E)=2 r .
\end{aligned}
$$

The generic splitting type is $(2,1)$.
Example 12.8. Now suppose we pick a union Y of complete intersection curves Y_{i} in \mathbb{P}^{3}.

Pick r pairs of natural numbers $\left(a_{i}, b_{i}\right)$, with $a_{i}+b_{i}=p$ constant. Pick polynomials

$$
f_{i} \in H^{0}\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}\left(a_{i}\right)\right) \quad \text { and } \quad g_{i} \in H^{0}\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}\left(b_{i}\right)\right) .
$$

Let $Y_{i}=Z\left(f_{i}\right) \cap Z\left(g_{i}\right)$. If we pick $f_{1}, f_{2}, \ldots, f_{r}$ and $g_{1}, g_{2}, \ldots, g_{r}$ appropriately, $Y_{1}, Y_{2}, \ldots, Y_{r}$ are smooth pairwise disjoint curves. Let Y be their union.

The Koszul complex for Y_{i} is

$$
0 \longrightarrow \mathcal{O}_{\mathbb{P}^{3}}\left(-\left(a_{i}+b_{i}\right)\right) \longrightarrow \underset{4}{\mathcal{O}_{\mathbb{P}^{3}}}\left(-a_{i}\right) \oplus \mathcal{O}_{\mathbb{P}^{3}}\left(-b_{i}\right) \longrightarrow \mathcal{I}_{Y_{i}} \longrightarrow 0 .
$$

It follows that

$$
\begin{aligned}
\operatorname{det} N_{Y_{i} / \mathbb{P}^{3}} \simeq \mathcal{O}_{\mathbb{P}^{3}} & \left.\left(-\left(a_{i}+b_{i}\right)\right)\right|_{Y_{i}} \\
& \left.\simeq \mathcal{O}_{\mathbb{P}^{3}}(-p)\right|_{Y_{i}}
\end{aligned}
$$

Thus

$$
\operatorname{det} N_{Y / \mathbb{P}^{3}}=\mathcal{O}_{Y}(p)
$$

The associated rank 2 vector bundle E associated to Y has

$$
\begin{aligned}
& c_{1}(E)=p \\
& c_{2}(E)=\sum a_{i} b_{i} .
\end{aligned}
$$

