
12. Examples

We start with a useful:

Lemma 12.1. Let E be a rank two vector bundle on Pn and let σ be a
global section of E such that the local complete intersection Z(σ) = Y
has codimension two.

Then E is decomposable if and only if Y is a complete intersection.

Proof. Suppose that E is decomposable. Then E ∼ OPn(a) ⊕ OPn(b)
for some a and b. Then σ = (f, g) where f and g are homogeneous
polynomials of degrees a and b. In this case Y = Z(f) ∩ Z(g).

Now suppose that Y is the intersection of the hypersurfaces W and
V . Then there are homogeneous polynomials f and g of degrees a and
b such that W = Z(f) and V = Z(g). Thus

f ∈ H0(Pn,OPn(a)) and g ∈ H0(Pn,OPn(b)).

The Koszul complex of the section

σ = (f, g) ∈ H0(Pn,OPn(a))⊕H0(Pn,OPn(b))

gives the short exact sequence

0 −→ OPn(−(a+ b)) −→ OPn(−(a))⊕OPn(−(b)) −→ IY −→ 0.

Thus we get a non-zero element of

Ext1Pn(IY ,OPn(−(a+ b))) ' H0(Y,OY ).

It is enough to show that the last group is one dimensional. In this
case there is only one non-trivial extension of IY by OPn(−(a+ b)), so
that E is isomorphic to OPn(−(a))⊕OPn(−(b)).

Claim 12.2. h0(Y,OY ) = 1 for every complete intersection Y of codi-
mension two in Pn, n ≥ 3.

Proof of (12.2). From the long exact sequence of cohomology associ-
ated to

0 −→ OPn(−(a+ b)) −→ OPn(−(a))⊕OPn(−(b)) −→ IY −→ 0,

we see that
h0(Y, IY ) = h1(Y, IY ) = 0.

From the long exact sequence of cohomology associated to

0 −→ IY −→ Pn −→ OY −→ 0

we see that
h0(Y,OY ) = h0(Pn,OPn) = 1 �
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Lemma 12.3. Let Y be a local complete intersection in Pn.
Then

ωY ' ωPn ⊗ detNY/Pn .

In particular detNY/Pn is the restriction of a line bundle if and only if
ωY is the restriction of a line bundle.

Proof. The first result is adjunction. The second result follows, as

ωPn ' OPn(−n− 1). �

It is not hard to write down local complete intersection curves in P3,
who canonical divisor is the restriction of a line bundle on P3 and yet
the curve is not a complete intersection.

We start with an easier case.

Example 12.4. Let Y be m reduced points p1, p2, . . . , pm in P2.

As Y is zero dimensional it follows that every vector bundle on Y
is trivial. Recall that we can apply Serre’s result in P2 provided that
k < 3. Thus we get vector bundles E of rank two on P2, which are
extensions:

0 −→ OP2 −→ E −→ IY (k) −→ 0.

Note that E has Chern classes

c1(E) = k

c2(E) = m.

Suppose that k = 1. If L is a line that does not meet Y then the
exact sequence above reduces to

0 −→ OL −→ E|L −→ OL(1) −→ 0.

This sequence splits, as

H1(P1,OP1(−1)) = 0.

Thus the splitting type is (1, 0) and this is the generic splitting type.
If k = 2 then this argument breaks down as

H1(P1,OP1(−2)) 6= 0.

In fact the generic splitting type is (1, 1).
If L is a line which meets one point xi of S then E|L has a section

σ|L which vanishes at xi and nowhere else. In this case, the restriction
of the short exact sequence above becomes

0 −→ OL(1) −→ E|L −→ OL(1) −→ 0.

This splits, as
H1(P1,OP1) = 0,
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so that the splitting type of L is (1, 1). Thus the generic splitting type
must be (1, 1).

In the case k = 2 the set of jump lines is precisely the set of lines
which meet two or more points of Y . The case k = 1 is more subtle
and in fact the set of jump lines is a curve of degree m− 1 in the dual
P2.

Example 12.5. Let Y be a union of d > 1 distinct lines L1, L2, . . . , Ld

in P3.

As Li = Hi∩Gi is the intersection of two hyperplanes it follows that

NY/P3|Li
= NLi/P3

= NHi/P3 |Li
⊕NGi/P3 |Li

= OP1(1)⊕OP1(1).

It follows that NY/P3 |Li
= O12. and so NY/P3 = OY (2). By Serre’s con-

struction there is a rank two vector indecomposable bundle E, which
fits into an exact sequence

0 −→ OP3 −→ E −→ IY (2) −→ 0,

with Chern classes

c1(E) = 2

c2(E) = d.

If we restrict E to a line that meets one of the Li transversally,
arguing as above, we see that the generic splitting type is (1, 1). If L
is a line that meets two of the lines of Y transversally then the L is a
jumping line, so that the locus of jumping lines contains a codimension
two subvariety of G(1, 3).

Example 12.6. Let Y be the union of r elliptic curves Ci of degree di
in P3.

For any such curve, there is an exact sequence

0 −→ TC −→ TP3 −→ NC/P3 −→ 0.

As the tangent bundle of an elliptic curve is trivial it follows that

detNC/P3 ' detTP3|C
= OC(4).

Therefore

NY/P3 = OY (4).
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There is then an associated rank two vector bundle E with

c1(E) = 4

c2(E) =
∑

di.

As a special case, if we take two plane elliptic curves C1 and C2

sitting in different planes H1 and H2 then d1 = d2 = 3 and F = E(−2)
is a rank two vector bundle with

c1(F ) = 0

c2(F ) = 2.

Example 12.7. Let Y be the union of r disjoint conics D1, D2, . . . , Dr

in P3.

If D ⊂ H is a conic sitting in a plane H then there is an exact
sequence

0 −→ ND/H −→ ND/P3 −→ NH/P3 |D −→ 0.

It follows that

detND/P3 ' ND/H ⊗NH/P3|D
' OD(2)⊗OD(1)

= OD(3).

and so

NY/P3 = OY (3).

The rank two vector bundle E associated to Y has Chern classes

c1(E) = 3

c2(E) = 2r.

The generic splitting type is (2, 1).

Example 12.8. Now suppose we pick a union Y of complete intersec-
tion curves Yi in P3.

Pick r pairs of natural numbers (ai, bi), with ai + bi = p constant.
Pick polynomials

fi ∈ H0(P3,OP3(ai)) and gi ∈ H0(P3,OP3(bi)).

Let Yi = Z(fi) ∩ Z(gi). If we pick f1, f2, . . . , fr and g1, g2, . . . , gr ap-
propriately, Y1, Y2, . . . , Yr are smooth pairwise disjoint curves. Let Y
be their union.

The Koszul complex for Yi is

0 −→ OP3(−(ai + bi)) −→ OP3(−ai)⊕OP3(−bi) −→ IYi
−→ 0.
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It follows that

detNYi/P3 ' OP3(−(ai + bi))|Yi

' OP3(−p)|Yi
.

Thus
detNY/P3 = OY (p).

The associated rank 2 vector bundle E associated to Y has

c1(E) = p

c2(E) =
∑

aibi.
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