
13. Topological versus holomorphic classification I

It is interesting to compare the topological versus the holomorphic
classification of vector bundles on Pn. Of course every holomorphic
vector bundle gives rise to a topological vector bundle. A priori, topo-
logical vector bundle means that the transition functions are continuous
but it is not hard to show that we can smooth the transition functions
and that two smooth vector bundles that are topologically equivalent
are isomorphic as smooth vector bundles.

We first review the topological classification. Most of the time we
will not provide any proofs. Recall that topological line bundles on Pn

are classified by their first chern class c1, which is an integer. Thus the
topological and the holomorphic classification coincide for line bundles.

We already showed that topological vector bundles on P1 are clas-
sified by their first chern class. Holomorphic vector bundles or rank r
are classified by a decreasing sequence of integers

a1 ≥ a2 ≥ · · · ≥ ar.

Two such are topologically equivalent if∑
ai =

∑
bi.

Schwarzenberger showed that the chern classes of holomorphic vec-
tor bundles must satisfy various congruences, as a consequence of the
(Hirzebruch)-Riemann-Roch theorem. On the other hand, if one ap-
plies the Atiyah-Singer index theorem the Schwarzenberger conditions
also hold for any topological vector bundle.

Suppose that we encode the chern classes as a polynomial with inte-
ger coefficients

ct(E) = 1 + c1(E)t+ · · ·+ cr(E)tr ∈ Z[t].

ct(E) is called the chern polynomial of E. Suppose that we factor
this polynomial over the complex numbers

ct(E) =
r∏

i=1

(1 + xit).

The numbers c1, c2, . . . , cr must then satisfy the Schwarzenberger
condition,

(Sr
n)

r∑
i=1

(
n+ xi + s

s

)
∈ Z for every s ∈ Z.

It is straightforward to calculate what these conditions reduce to for
low values of r and n. S1

n and S2
2 impose no conditions at all. S2

3 is
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equivalent to

c1c2 ≡ 0 mod 2.

S2
4 is equivalent to

c2(c2 + 1− 3c1 − 2c21) ≡ 0 mod 12.

Finally, S3
3 is equivalent to

c1c2 ≡ c3 mod 2.

Note that if E is a rank r bundle over Pn and r ≥ n then E has
n−r linearly independent sections. These linearly independent sections
define a sub vector bundle of rank n− r and this bundle splits off as a
direct summand (using partitions of unity). Thus

E ' E ′ ⊕ (Pn × Cn−4)

where E ′ is a vector bundle of rank n.
Topological vector bundles are completely classified. There is one

bundle for each collection of chern classes which satisfy the Schwarzen-
berger conditions.

So for n = 2 the topological classification of rank two vector bundles
corresponds to pairs of integers (c1, c2). For n = 3 the classification of
rank three vector bundles corresponds to triples of integers (c1, c2, c3)
subject to c1c2 ≡ c3 mod 2.

Now consider rank two vector bundles over P3. The Schwarzenberger
condition is

c1c2 ≡ 0 mod 2.

It is known that there always a rank two vector bundle with these chern
classes. If c1 is odd there is one and if c1 is even the are two topologically
inequivalent bundles. These two bundles are distinguished by the α-
invariant. If c1(E) = 2k then c1(E(−k)) = 0. In this case the structure
group can be reduced to Sp(1) ⊂ U(2).

Thus we just have to classify the symplectic line bundles on P3.
Symplectic line bundles are topologically stable, classified by the group
Z⊕Z2. Let π be the projection onto the second factor. The α invariant
of a vector bundle E such that c1(E) = 2k is then given by

α(E) = π(E(−k)) ∈ Z2.

If E is a holomorphic rank two vector bundle on P3 with c1(E) = 2k
then

α(E) ≡ h0(P3, E(−k − 2)) + h1(P3, E(−k − 2)) mod 2.

Let us turn to the problem of which topological vector bundles have
a holomorphic structure. We first treat the case of rank two on P2.
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Recall that there is one topological vector bundle for every pair of
integers (c1, c2).

Theorem 13.1 (Schwarzenberger). For every pair of integers (c1, c2) ∈
Z2 there is a holomorphic vector bundle E or rank two on P2.

Proof. Let π : X −→ P2 blow up four points x1, x2, x3 and x4 of P2.
Let Ei be the exceptional divisor over xi and let

L = OX(D)

be the line bundle associated to the divisor D
∑
kiEi ≥ 0.

We consider extensions

0 −→ L⊗ π∗OP2(b) −→ V ′ −→ L∗ ⊗ π∗OP2(a) −→ 0.

If V ′ = π∗V for some rank two vector bundle V then V has chern
classes

c1(V ) = a+ b

c2(V ) = c2(π
∗V )

= (D + bπ∗H)(−D + aπ∗H)

=
∑

k2i + ab,

where we used the fact that

Ei · Ej =

{
−1 if i = j

0 otherwise.

and Ei · π∗H = 0.
As every positive integer is the sum of four squares, note that we can

always choose a, b, k1 ≥ 0, k2 ≥ 0, k3 ≥ 0 and k4 ≥ 0 such that

c1 = a+ b

c2 =
∑

k2i + a+ b,

where a− b < 0.
Proceeding in a similar manner to before, one can check that a vector

bundle V ′ given as an extension

0 −→ L⊗ π∗OP2(b) −→ V ′ −→ L∗ ⊗ π∗OP2(a) −→ 0.

is the pullback of a vector bundle V from P2 if and only if its restriction
to any of the exceptional curves Ei is of the form

0 −→ OEi
(−ki) −→ O⊕2Ei

−→ OEi
(−ki) −→ 0.

(Recall that one shows that there is only one such extension over a
neighbourhood of each exceptional.)

We are thus reduced to
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Claim 13.2. For a and b ∈ Z, a− b < 0 and ki ≥ 0, i = 1, 2, 3 and 4
there is an extension

0 −→ L⊗ π∗OP2(b) −→ V ′ −→ L∗ ⊗ π∗OP2(a) −→ 0.

with
V ′|Ei

' O⊕2Ei
.

Proof of (13.2). We may assume that b = 0. In this case, extensions
of the form

0 −→ L −→ V ′ −→ L∗ ⊗ π∗OP2(a) −→ 0.

are classified by

Ext1X(L∗ ⊗ π∗OP2(a), L) = H1(X,L⊗2 ⊗ π∗OP2(−a)).

Let E = E1 + E2 + E3 + E4. Since there are extensions

0 −→ OE(D) −→ O⊕2E −→ OE(−D) −→ 0,

it suffices to show that

H1(X,L⊗2 ⊗ π∗OP2(−a)) −→ H1(E,L⊗2)

is surjective. It suffices to show that

H2(X,OX(2D − E)⊗ π∗OP2(−a)) = 0

As
KX = π∗KP2 + E,

it follows that

h2(X,OX(2D − E)⊗ π∗OP2(−a)) = h0(X,OX(2E − 2D)⊗ π∗OP2(a− 3))

≤ h0(X,OX(2E)⊗ π∗OP2(a− 3))

If we take the long exact sequence of cohomology associated to the
short exact sequence

0 −→ OX((k − 1)E) −→ OX(kE) −→ OE(kE) −→ 0,

we see that

h0(X,OX(kE)⊗ π∗OP2(a− 3)) = h0(X, π∗OP2(a− 3)),

for all k ≥ 0. But

h0(X, π∗OP2(a− 3)) ≤ h0(P2,OP2(a− 3)) = 0,

as a < 0. �

�
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