14. Topological versus holomorphic classification II

We now turn to the problem of putting a holomorphic structure on every topological rank two vector bundle on \mathbb{P}^{3}. This means that given integers c_{1} and c_{2} such that $c_{1} c_{2} \equiv 0 \bmod 2$ then we have to find a holomorphic rank two vector bundle E with chern classes c_{1} and c_{2} and if c_{1} is even, in addition we have to pick E so that

$$
\alpha(E) \equiv h^{0}\left(\mathbb{P}^{3}, E(-k-2)\right)+h^{1}\left(\mathbb{P}^{3}, E(-k-2)\right) \quad \bmod 2
$$

is both odd and even.
If we put

$$
d(m)= \begin{cases}1 & \text { if } m \geq 0 \text { and } m \equiv 0 \quad \bmod 4 \\ 0 & \text { otherwise }\end{cases}
$$

then note that

$$
d(m) \equiv h^{0}\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(m)\right) \quad \bmod 2 .
$$

We are going to use the Serre construction.
Lemma 14.1. Let $Y \subset \mathbb{P}^{3}$ be the codimension two zero locus of a section $\sigma \in H^{0}\left(\mathbb{P}^{3}, E\right)$ of a rank two vector bundle E such that $c_{1}(E)=$ $2 k$.

Then

$$
\alpha(E) \equiv h^{0}\left(Y, \mathcal{O}_{Y}(k-2)\right)+d(k-2) \quad \bmod 2 .
$$

Proof. Consider the Koszul complex of the section σ

$$
0 \longrightarrow \mathcal{O}_{\mathbb{P}^{3}}(-2 k) \longrightarrow E^{*} \longrightarrow \mathcal{I}_{Y} \longrightarrow 0 .
$$

By twisting with $\mathcal{O}_{\mathbb{P}^{3}}(k-2)$ we obtain

$$
0 \longrightarrow \mathcal{O}_{\mathbb{P}^{3}}(-k-2) \longrightarrow E^{*}(k-2) \longrightarrow \mathcal{I}_{Y}(k-2) \longrightarrow 0 .
$$

Now

$$
\begin{aligned}
E^{*}(k-2) & \simeq E \otimes \operatorname{det} E^{*} \otimes \mathcal{O}_{\mathbb{P}^{3}}(-k-2) \\
& \simeq E(-k-2) .
\end{aligned}
$$

Therefore the long exact sequence of cohomology associated to the short exact sequence gives
$0 \longrightarrow H^{0}\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(-k-2)\right) \longrightarrow H^{0}\left(\mathbb{P}^{3}, E(-k-2)\right) \longrightarrow H^{0}\left(\mathbb{P}^{3}, \mathcal{I}_{Y}(k-2)\right) \longrightarrow 0$
and

$$
0 \longrightarrow H^{1}\left(\mathbb{P}^{3}, E(-k-2)\right) \longrightarrow H^{1}\left(\mathbb{P}^{3}, \mathcal{I}_{Y}(k-2)\right) \longrightarrow 0
$$

Finally from the exact sequence

$$
0 \longrightarrow \mathcal{I}_{Y}(k-2) \longrightarrow \mathcal{O}_{\mathbb{P}^{2}}(k-2) \longrightarrow \mathcal{O}_{Y}(k-2) \longrightarrow 0
$$

one obtains
$0 \rightarrow H^{0}\left(\mathbb{P}^{3}, \mathcal{I}_{Y}(k-2)\right) \longrightarrow H^{0}\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(k-2)\right) \longrightarrow H^{0}\left(Y, \mathcal{O}_{Y}(k-2)\right) \longrightarrow H^{1}\left(\mathbb{P}^{3}, \mathcal{I}_{Y}(k-2)\right) \rightarrow 0$.
Putting all of this together we get

$$
\begin{aligned}
\alpha(E) & =h^{0}\left(\mathbb{P}^{3}, E(-k-2)\right)+h^{1}\left(\mathbb{P}^{3}, E(-k-2)\right) \\
& =h^{0}\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(-k-2)\right)+h^{0}\left(\mathbb{P}^{3}, \mathcal{I}_{Y}(k-2)\right)+h^{1}\left(\mathbb{P}^{3}, \mathcal{I}_{Y}(k-2)\right) \\
& \equiv h^{0}\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}(k-2)\right)+h^{0}\left(Y, \mathcal{O}_{Y}(k-2)\right) \\
& \equiv h^{0}\left(Y, \mathcal{O}_{Y}(k-2)\right)+d(k-2) \quad \bmod 2 .
\end{aligned}
$$

Example 14.2. Let Y be the intersection of two hypersurfaces V_{a} and V_{b} of degrees a and b, where $a \leq b$ and $a+b=2 k$ is even.

The associated rank two vector bundle E splits as a direct sum $\mathcal{O}_{\mathbb{P}^{3}}(a) \oplus \mathcal{O}_{\mathbb{P}^{3}}(b)$. We get

$$
\begin{aligned}
& h^{0}\left(\mathbb{P}^{3}, E(-k-2)\right)=h^{0}\left(\mathbb{P}^{3}, \mathcal{O}_{\mathbb{P}^{3}}\left(\frac{b-a}{2}-2\right)\right) \\
& h^{1}\left(\mathbb{P}^{3}, E(-k-2)\right)=0
\end{aligned}
$$

and so

$$
\alpha(E)=d\left(\frac{b-a}{2}-2\right)
$$

Lemma 14.3. Let σ be a section of a rank two vector bundle E, where $c_{1}(E)=2 k$. If the zero scheme Y of σ is a disjoint union of r complete intersections $Y_{i}=V_{a_{i}} \cap V_{b_{i}}, i=1,2,3, \ldots, r$ with $a_{i} \leq b_{i}$ and $a_{i}+b_{i}=2 k$ then

$$
\alpha(E) \equiv(r-1) d(k-2)+\sum_{i=1}^{r} d\left(k-a_{i}-2\right) \quad \bmod 2 .
$$

Proof. We already know that

$$
\begin{aligned}
\alpha(E)+d(k-2) & \equiv h^{0}\left(Y, \mathcal{O}_{Y}(k-2)\right) \quad \bmod 2 \quad \text { so that } \\
\alpha(E)+d(k-2) & \equiv \sum_{i=1}^{r} h^{0}\left(Y_{i}, \mathcal{O}_{Y_{i}}(k-2)\right) \quad \bmod 2 .
\end{aligned}
$$

Let $E_{i}=\mathcal{O}_{\mathbb{P}^{3}}\left(a_{i}\right) \oplus \mathcal{O}_{\mathbb{P}^{3}}\left(b_{i}\right)$ be the rank two vector bundle associated to Y_{i}. Then

$$
\alpha\left(E_{i}\right)+d(k-2) \equiv h^{0}\left(Y_{i}, \mathcal{O}_{Y_{i}}(k-2)\right) \quad \bmod 2
$$

so that

$$
\alpha(E)+d(k-2) \equiv \sum_{i=1}^{r}\left(\alpha\left(E_{i}\right)+d(k-2)\right) \quad \bmod 2
$$

that is,

$$
\alpha(E) \equiv(r-1) d(k-2)+\sum_{i=1}^{r} \alpha\left(E_{i}\right) \quad \bmod 2 .
$$

However, we proved in the example that

$$
\alpha\left(E_{i}\right) \equiv d\left(k-a_{i}-2\right) \quad \bmod 2 .
$$

Define a function

$$
\Delta: \mathbb{Z}^{2} \longrightarrow \mathbb{Z}
$$

by the formula

$$
\Delta\left(c_{1}, c_{2}\right)=c_{1}^{2}-4 c_{2}
$$

Then define

$$
\Delta(E)=\Delta\left(c_{1}(E), c_{2}(E)\right)
$$

Note that

$$
c_{1}(E(k))=c_{1}(E)+2 k \quad \text { and } \quad c_{2}(E(k))=c_{2}(E)+k c_{1}(E)+k^{2},
$$

and so

$$
\begin{aligned}
\Delta(E(k)) & \left.=\left(c_{1}(E)+2 k\right)^{2}-4\left(c_{2}(E)+k c_{1}(E)+k^{2}\right)\right) \\
& =c_{1}(E)^{2}-4 c_{2}(E) \\
& =\Delta(E) .
\end{aligned}
$$

Further

$$
\Delta\left(c_{1}, c_{2}\right) \equiv\left\{\begin{array}{lll}
0 & \bmod 4 & \text { when } c_{1} \text { is even } \\
1 & \bmod 4 & \text { when } c_{1} \text { is odd }
\end{array}\right.
$$

Theorem 14.4 (Atiyah, Horrocks, Rees). Every topological rank two vector bundle on \mathbb{P}^{3} has a holomorphic structure.

Proof. Suppose that we have a pair of integers $\left(c_{1}, c_{2}\right)$ such that $c_{1} c_{2} \equiv 0$ $\bmod 2$.

We construct a holomorphic rank two vector bundle E with

$$
\begin{aligned}
& c_{1}(E)=c_{1} \\
& c_{2}(E)=c_{2}
\end{aligned}
$$

Let Y be the union of disjoint complete intersection curves of type $\left(a_{i}, b_{i}\right)$ where $a_{i}+b_{i}=p$ is constant. If E is the associated rank two vector bundle then E has chern classes

$$
\begin{aligned}
& c_{1}(E)=p \\
& c_{2}(E)=\sum a_{i} b_{i} .
\end{aligned}
$$

We assume that $a_{i} \leq b_{i}$ so that $a_{i} \leq p / 2$.

If we fix c_{1} and c_{2} then it is not hard to argue that we may find p, r and $a_{1}, a_{2}, \ldots, a_{r}$ such

$$
p^{2}-4 \sum_{i=1}^{r} a_{i} b_{i}=\Delta\left(c_{1}, c_{2}\right) .
$$

Further we may arrange for p to have the same parity as c_{1}. Let

$$
E^{\prime}=E\left(\frac{c_{1}-p}{2}\right)
$$

Then

$$
\begin{aligned}
& c_{1}\left(E^{\prime}\right)=c_{1}(E)+c_{1}-p=c_{1} \\
& c_{2}\left(E^{\prime}\right)=c_{2}(E)+\frac{c_{1}-p}{2} c_{1}(E)+\frac{\left(c_{1}-p\right)^{2}}{4}=c_{2}
\end{aligned}
$$

Now suppose that c_{1} is even. We have to realise both values of the α-invariant. The α invariant of E^{\prime} is

$$
\begin{aligned}
\alpha\left(E^{\prime}\right) & \equiv \alpha(E) \\
& \equiv(r-1) d(p / 2-2)+\sum_{i=1}^{r} d\left(p / 2-a_{i}-2\right) \quad \bmod 2
\end{aligned}
$$

It is possible to show, by elementary but involved calculations in number theory, that we can both parities, as we vary p, r and $a_{1}, a_{2}, \ldots, a_{r}$.

We now consider the case of rank three.
Theorem 14.5 (Vogelaar). Every topological rank three bundle on \mathbb{P}^{3} has a holomorphic structure.

In particular
Corollary 14.6. Every topological bundle on \mathbb{P}^{3} has a holomorphic structure.

We will need an extension of the Serre construction from codimension two to codimension three. The key point in the Serre construction is that since the line bundle

$$
\operatorname{det} N_{Y / \mathbb{P}^{n}}(-k)
$$

is trivial then there is extension

$$
0 \longrightarrow \mathcal{O}_{\mathbb{P}^{n}} \longrightarrow E \longrightarrow \mathcal{I}_{Y}(k) \longrightarrow 0
$$

such that E is locally free.
For codimension three, the idea is to consider extensions

$$
0 \longrightarrow \mathcal{O}_{\mathbb{P}^{n}} \oplus \mathcal{O}_{\mathbb{P}^{n}} \longrightarrow E \longrightarrow \mathcal{I}_{Y}(k) \longrightarrow 0
$$

and to try to prove that E is locally free.
Theorem 14.7. Let Y be a codimension three local complete intersection.

If the bundle

$$
\operatorname{det} N_{Y / \mathbb{P}^{n}}(-k)
$$

is generated by two global sections t_{1} and t_{2} then there is a vector bundle E of rank three with two sections s_{1} and s_{2} that are linearly dependent over Y.

