15. An argument of Ran

We recall a famous conjecture of Hartshorne:
Conjecture 15.1 (Hartshorne). Let $Y \subset \mathbb{P}^{n}$ be a smooth subvariety. If $2 \operatorname{codim} Y<\operatorname{dim} Y$ then Y is a complete intersection.

The first thing to say is that (15.1) is sharp. For example, consider the Grassmannian $\mathbb{G}(1,4)$ of lines in $\mathbb{P}^{4}=\mathbb{P}(V)$. Under the Plücker embedding this gets mapped into

$$
Y \subset \mathbb{P}^{9}=\mathbb{P}\left(\bigwedge^{2} V\right)
$$

Y has dimension 6 and codimension 3 , but the ideal of Y is generated by quadrics.

It is interesting to specialise this conjecture to the case of codimension two. In this case the conjecture becomes interesting if Y has dimension at least five, that is, $n \geq 7$. By the Serre correspondence this translates to:

Conjecture 15.2. Every vector bundle of rank two on \mathbb{P}^{7} splits.
There is very little evidence for (15.2). We present an argument of Ziv Ran which gives the best results.

Theorem 15.3. Let $Y \subset \mathbb{P}^{m+2}$ be a locally complete intersection subvariety of codimension two. Let $N=N_{Y / \mathbb{P}^{m+2}}$ be the normal bundle. Let $d=c_{2}(N)$. Suppose that $\operatorname{det} N \simeq \mathcal{O}_{Y}(k)$.

If

$$
\begin{equation*}
k \geq \frac{d}{m}+m \tag{1}
\end{equation*}
$$

or
(2) $d \leq m$
then Y is a complete intersection.
There is an argument due to Barth that if Y is smooth, the characteristic is zero and $m \geq 4$ that the condition $\operatorname{det} N \simeq \mathcal{O}_{Y}(d)$ is vacuous.

If $\operatorname{det} N \simeq \mathcal{O}_{Y}(k)$ then by adjunction we have

$$
\omega_{X}=\mathcal{O}_{Y}(k-m-3) .
$$

Therefore (i) means that ω_{X} is large relative to d and m.
The idea of the proof of (15.3) goes back to a simple observation of Severi. If Y is contained in a hyersurface X of degree u then every $(u+1)$-secant line to Y must be contained in X. Therefore there is no $(u+1)$-secant line to Y through a general point of projective space.

The idea is to try to reverse this argument. Severi showed that if Y is a surface in \mathbb{P}^{4} and the 2 -secants to Y don't span the whole of \mathbb{P}^{4} then Y is contained in a quadric. We are going to generalise this argument. If the $(m+1)$-secants to Y don't pass through a general point of \mathbb{P}^{m+2} then Y is a contained in a hyersurface of degree at most m.

Let E be the rank two vector bundle associated to Y. We have the Koszul complex

$$
0 \longrightarrow \mathcal{O}_{\mathbb{P}^{m+2}} \longrightarrow E \longrightarrow \mathcal{I}_{Y}(k) \longrightarrow 0
$$

We have

$$
\begin{aligned}
& c_{1}(E)=k \\
& c_{2}(E)=d .
\end{aligned}
$$

Define a function

$$
e: \mathbb{Z} \longrightarrow \mathbb{Z}
$$

by the rule

$$
\begin{aligned}
e(t) & =c_{2}(E(-t)) \\
& =c_{2}(E)-c_{1}(E) t+t^{2} \\
& =d-t(k-t) .
\end{aligned}
$$

Consider the incidence correspondence for the Grassmannian $\mathbb{G}(1, m+$ 2)) of lines in \mathbb{P}^{m+2},

$$
I=\left\{(p, L) \in \mathbb{P}^{m+2} \times \mathbb{G}(1, m+2) \mid p \in L\right\} \subset \mathbb{P}^{m+2} \times \mathbb{G}(1, m+2)
$$

There are two natural projections

Let p be a general point of \mathbb{P}^{m+2} and let
$\Sigma_{u}=\Sigma_{u, p}=\{L \in \mathbb{G}(1, m+2) \mid$ the length of $L \cap Y$ is at least $k\}$.
We think of Σ_{u} as the set of u-secant lines to Y. If the intersection $L \cap Y$ is reduced then L is u-secant. If $u=2$ and $L \cap Y$ is not reduced then L is tangent to Y at the point $L \cap Y$ and of course tangent lines are limits of secant lines.

There are strong analogies between the splitting type of a line and the number of times it is secant. The fact that Σ_{u} is non-empty is akin to the existence of jumping lines.

Proposition 15.4. If none of the integers from 0 to u are roots of the polynomial $e(t)$ and $u \leq m$ then Σ_{u+1} is non-empty.
Proof. We will prove the stronger statement that $\operatorname{dim} \Sigma_{i}=2(m+1)-i$, for $i \leq u+1$.

Note that Σ_{0} has dimension $2(m+1)$. So by induction it suffices to prove that $\Sigma_{u+1} \subset \Sigma_{u}$ is a divisor. For this it suffices to show that if that $C \subset \Sigma_{u}$ is an irreducible curve and C does not intersect Σ_{u+1} then $e(u)=0$.

Our hypotheses imply that the length of $L \cap Y$ is equal to u for all $L \in C$. Let $\tilde{C} \longrightarrow C$ be the normalisation of C and let $\gamma: S \longrightarrow \tilde{C}$ be the pullback of the \mathbb{P}^{1} bundle $g: I \longrightarrow \mathbb{G}(1, m+2)$. Let $\phi: S \longrightarrow \mathbb{P}^{m+2}$ be the natural map. Let $D=\pi^{-1}(Y)$, where we pullback Y as a scheme.

Consider the map $D \longrightarrow \tilde{C}$. By assumption the length of a fibre is equal to u, a constant. Therefore D is flat over \tilde{C}, hence CohenMacaulay. But then D is a Cartier divisor in S.

Let F be fibre of π and let Z be the section of π contracted down by ϕ to p. Let H be the pullback of a hyperplane. Then there is a numerical equivalence

$$
D \equiv u H+l F,
$$

for some l. But as $D \cdot Z=0$, it follows that $l=0$, so that

$$
D \equiv u H
$$

As the map of sheaves

$$
\mathcal{O}_{S} \longrightarrow \phi^{*} E
$$

vanishes on D, there is a short sequence

$$
0 \longrightarrow \mathcal{O}_{S}(D) \longrightarrow \phi^{*} E \longrightarrow Q \longrightarrow 0,
$$

where Q is a line bundle. If we use this to compute chern classes then we get

$$
\begin{aligned}
c_{1}(Q) & =c_{1}\left(\phi^{*} E\right)-c_{1}\left(\mathcal{O}_{S}(D)\right) \\
& =(k-u) H
\end{aligned}
$$

and so

$$
\begin{aligned}
c_{2}\left(\phi^{*} E\right) & =c_{1}\left(\mathcal{O}_{S}(D)\right) c_{1}(Q) \\
& =(k-u) u .
\end{aligned}
$$

But then $d=u(k-u)$, that is, $e(u)=0$.
Corollary 15.5. If none of the integers from 0 to u are roots of the polynomial $e(t)$ and $u \leq m$ then Y is not contained in a hypersurface of degree k.

Proof. (15.4) implies that Σ_{u+1} is non-empty. But then Y is not contained in a hypersurface of degree k.

We now prove (15.3).

