17. Extremal Bundles

We look at various extremal cases of Hartshorne's conjecture. Let $Y \subset \mathbb{P}^{m+2}$ be a local complete intersection of codimension two of degree d such that $\operatorname{det} N_{Y / \mathbb{P}^{m+2}}=\mathcal{O}_{Y}(k)$. We have already seen that if

$$
k \geq \frac{d}{\mu}+\mu
$$

for some $\mu \in(0, m]$ then Y is a complete intersection.
If E is the associated vector bundle then

$$
\begin{aligned}
& c_{1}(E)=k \\
& c_{2}(E)=d .
\end{aligned}
$$

Suppose that α and β are the chern roots, so that

$$
c(E)=(1+\alpha)(1+\beta)
$$

and $k=c_{1}(E)=\alpha+\beta$ and $d=c_{2}(E)=\alpha \beta$.
Suppose that one of α and β lies in the interval $(0, m]$. Then (1) holds, with $\mu=\alpha$, so that Y is a complete intersection. Note that $\alpha>0$ and $\beta>0$ since $\alpha \beta=d>0$ and $\alpha+\beta=k>0$. Therefore if

$$
k<2 m
$$

then one of α and β belongs to $(0, m]$,
Suppose that $k>2 m$ and the first inequality does not hold. Then

$$
\frac{d}{\mu}+\mu>2 m
$$

Thus

$$
d>2 m \mu-\mu^{2} .
$$

The RHS is maximised if we take $\mu=m$, in which case

$$
d>m^{2}
$$

It follows that if $d \leq m^{2}$ then Y is a complete intersection.

