## 2. The Tangent bundle and projective bundle

Let us give the first non-trivial example of a vector bundle on $\mathbb{P}^{n}$. Recall that given any smooth projective variety one can construct the tangent bundle. Geometrically a tangent vector at $x \in X$ is an equivalence class of paths,

$$
\gamma:(-\epsilon, \epsilon) \longrightarrow X
$$

such that $\gamma(0)=x$. Two paths are considered equivalent if they have the same first derivative (one can make sense of this in a way which is not circular). The set of all tangent vectors based at $x$ is a vector space of dimension $n, T_{x} X$. The tangent $T X$ bundle is the set of all tangent vectors. There is an obvious projection down to $X, \pi: T X \longrightarrow X$. The fibre over a point is the tangent bundle. Since $X$ is locally isomorphic to an open subset of $\mathbb{R}^{n}$ and the tangent bundle of $\mathbb{R}^{n}$ is a product, it is clear that the tangent bundle is locally a product. The transition functions are given by the Jacobian of the coordinate change. Thus the tangent bundle is a bundle.

The algebraic approach to the construction of the tangent bundle proceeds from a different direction. If $X$ is a variety and $x \in X$ is a point, with local ring $\mathcal{O}_{X, x}$, then the Zariski tangent space is the dual of

$$
T_{x} X={\frac{\mathfrak{m}}{\mathfrak{m}^{2}}}^{*},
$$

where $\mathfrak{m}$ is the maximal ideal of the local ring $\mathcal{O}_{X, x}$. In terms of schemes, one can look at the set of maps

$$
\operatorname{Hom}\left(\operatorname{Spec} \frac{\mathbb{C}[\epsilon]}{\left\langle\epsilon^{2}\right\rangle}, X\right),
$$

where the unique point of

$$
\operatorname{Spec} \frac{\mathbb{C}[\epsilon]}{\left\langle\epsilon^{2}\right\rangle}
$$

is sent to $x$. This is again the dual of the Zariski tangent space. If $X$ is affine, one can construct the sheaf of differentials. One can globalise this construction in a somewhat bizarre way. Let

$$
\Delta: X \longrightarrow X \times X
$$

be the diagonal morphism. Let $\mathcal{I}$ be the ideal sheaf of the diagonal sitting inside the product. Then

$$
\frac{\mathcal{I}}{\mathcal{I}^{2}},
$$

is naturally supported on the diagonal, a copy of $X$. In fact if $X$ is smooth this sheaf is locally free and the pullback to $X$ is the cotangent sheaf $\Omega_{X}^{1}$, the sheaf of sections of the cotangent bundle.

There is a standard way to construct the tangent and cotangent bundles on projective space. Recall that as a manifold, $\mathbb{P}^{n}$ is the set of lines in an $(n+1)$ dimensional vector space $V \simeq \mathbb{C}^{n+1}$. Almost by definition there is a universal sublinebundle

$$
S \subset V \times \mathbb{P}^{n}
$$

There is a quotient vector bundle $Q$, so that we get an exact sequence of vector bundles

$$
0 \longrightarrow S \longrightarrow \mathbb{P}^{n} \times V \longrightarrow Q \longrightarrow 0
$$

A morphism to projective space is given by a line bundle and a choice of $n+1$ sections which don't vanish simultaneously (the universal property of projective space). In this case the line bundle is the pullback of $S^{*}$. So a morphism of

$$
\operatorname{Spec} \frac{\mathbb{C}[\epsilon]}{\left\langle\epsilon^{2}\right\rangle}
$$

is given by a choice of deformation of the line bundle $S$. But if you deform in the direction of $S$ nothing happens. So the Zariski tangent space to $\mathbb{P}^{n}$ is

$$
\operatorname{Hom}(S, Q) \simeq Q \otimes S^{*}
$$

The exact sequence

$$
0 \longrightarrow S \longrightarrow \mathbb{P}^{n} \times V \longrightarrow Q \longrightarrow 0
$$

is the Euler sequence. At the level of sheaves we have

$$
0 \longrightarrow \mathcal{O}_{\mathbb{P}^{n}}(-1) \longrightarrow \mathcal{O}_{\mathbb{P}^{n}}^{n+1} \longrightarrow T_{X}(-1) \longrightarrow 0
$$

If we tensor by $\mathcal{O}_{\mathbb{P}^{n}}$ we get

$$
0 \longrightarrow \mathcal{O}_{\mathbb{P}^{n}} \longrightarrow \mathcal{O}_{\mathbb{P}^{n}}^{n+1}(1) \longrightarrow T_{X} \longrightarrow 0
$$

This second map sends $\left(l_{0}, l_{1}, \ldots, l_{n}\right)$ to

$$
\sum l_{i} \frac{\partial}{\partial x_{i}}
$$

The kernel is $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ as

$$
\sum x_{i} \frac{\partial}{\partial x_{i}}
$$

is radial.
If $E$ is a vector bundle of rank $r$ we can associate a projective bundle over $X$.

Definition 2.1. A projective bundle $Y$ on a complex projective variety $X$ is a projective variety together with a holomorphic map $\pi: Y \longrightarrow$ $X$ and an open cover $\left\{U_{\alpha}\right\}$ of $X$ such that

$$
\left.Y\right|_{U_{\alpha}}=\pi^{-1}\left(U_{\alpha}\right)
$$

is isomorphic to the product $U_{\alpha} \times \mathbb{P}^{r}$ over $U_{\alpha}$,

such that on the overlap

$$
U_{\alpha \beta}=U_{\alpha} \cap U_{\beta}
$$

the transition functions are linear functions on $\mathbb{P}^{r}$.
If $E$ is a vector bundle then one can construct the associated projective bundle, $\mathbb{P}(E)$. By definition of $E$, we can find an open cover $\left\{U_{\alpha}\right\}$ of $X$ such that $E_{\alpha} \simeq X \times \mathbb{C}^{r}$. For the associated projective bundle, $Y=\mathbb{P}(E)$, let $Y_{\alpha} \simeq X \times \mathbb{P}^{r-1}$. As the transition functions of $E$ are given by linear functions then so are the transition functions for $Y$. Thus $Y$ is a projective bundle.

One can also make this construction algebraically. $Y$ comes with a locally free sheaf $\mathcal{O}_{Y}(1)$ of rank one. Fibre by fibre it restricts to the sheaf $\mathcal{O}_{\mathbb{P}^{r-1}}(1)$. Note that two vector bundles $E_{1}$ and $E_{2}$ give rise to isomorphic projective bundles $Y_{1}$ and $Y_{2}$ if and only if there is a line bundle $L$ such that $E_{1}=L_{2}{\underset{\mathcal{O}}{X}}^{\otimes} E_{2}$. In fact one direction is clear, since tensoring by a line bundle won't change the fibres of the projective bundle, the transition functions of $Y_{1}$ and $Y_{2}$ are the same. Thus $Y_{1}$ and $Y_{2}$ are isomorphic. Note however that the tautological rank one sheaves differ,

$$
\mathcal{O}_{Y_{2}}(1)=\mathcal{O}_{Y_{1}}(1) \underset{\mathcal{O}_{Y_{1}}}{\otimes} \pi^{*} L
$$

In general, a projective bundle $Y$ over $X$ won't come from a vector bundle. It will come from a vector bundle if the open cover trivialising $Y$ over $X$ are Zariski open subsets and $X$ is smooth. In this case, there is a divisor $D$ on $Y$, which restricts to the general fibre of $\pi$ as a hyperplane. Just take the closure of the inverse image of $U_{\alpha} \times H$, where $H$ is a hyperplane in $\mathbb{P}^{r-1}$. Consider the associated rank one locally free sheaf $\mathcal{O}_{Y}(D)$. Standard results imply that

$$
\mathcal{E}=\pi_{*}\left(\mathcal{O}_{Y}(D)\right)
$$

is a locally free sheaf of rank $r$.

However there are examples of projective bundles which are trivial in the Euclidean topology which don't come from vector bundles. Consider the exact sequence of algebraic groups,

$$
0 \longrightarrow \mathbb{C}^{*} \longrightarrow \mathrm{GL}(r) \longrightarrow \mathrm{PGL}(r) \longrightarrow 0
$$

One can sheafify this sequence to get

$$
0 \longrightarrow \mathcal{O}_{X}^{*} \longrightarrow \mathrm{GL}(r) \longrightarrow \mathrm{PGL}(r) \longrightarrow 0
$$

Taking the long exact sequence of cohomology we get

$$
H^{1}\left(X, \mathcal{O}_{X}^{*}\right) \longrightarrow H^{1}(X, \mathrm{GL}(r)) \longrightarrow H^{1}(X, \operatorname{PGL}(r)) \longrightarrow H^{2}\left(X, \mathcal{O}_{X}^{*}\right)
$$

Note that is does make sense to take cohomology of a sheaf of nonabelian groups. Note however that higher cohomology is no longer a group, just a pointed set. The cohomology set

$$
H^{1}(X, \mathrm{GL}(r))
$$

classifies vector bundles of rank $r$. The cohomology set

$$
H^{1}(X, \operatorname{PGL}(r))
$$

classifies projective bundles of rank $r-1$. The map between them is the natural map which assigns to a vector bundle the associated projective bundle. The kernel of this map is

$$
H^{1}\left(X, \mathcal{O}_{X}^{*}\right)
$$

which as we have already seen classifies line bundles on $X$. However the last map

$$
H^{1}(X, \operatorname{PGL}(r)) \cdot H^{2}\left(X, \mathcal{O}_{X}^{*}\right)
$$

is not always zero. The image is the Brauer group; it classifies projective bundles over $X$ which are not Zariski trivial.

There is a fun example of a $\mathbb{P}^{1}$-bundle over $\mathbb{P}^{2}$. Let

$$
Y=\{(x, L) \mid x \in L\} \subset \mathbb{P}^{2} \times \mathbb{P}^{2}
$$

be the incidence correspondence between points and lines on $\mathbb{P}^{2}$. In coordinates $[x: y: z]$ on the first $\mathbb{P}^{2}$ and $[a: b: c]$ on the second $\mathbb{P}^{2}, Y$ is given by the bihomogeneous equation

$$
a x+b y+c z=0 .
$$

Consider projection $\pi$ of $Y$ down to the first $\mathbb{P}^{2}$. The fibre over a point $[x: y: z]$ is the set of all lines this point. Fix the point $p=[0: 0: 1]$. The set of lines through $p$ is given by $c=0$, so that we get the line $[a: b: 0] \subset \mathbb{P}^{2}$. Thus the fibres of $\pi$ are copies of $\mathbb{P}^{1}$. Now suppose we look at the affine open subset $z \neq 0$ of $\mathbb{P}^{2}$.

We can use point-slope to see that $Y$ is trivial over $U=\mathbb{A}^{2}=(z \neq 0)$. More geometrically, a line through the point $[x: y: z]$ will meet the
line $L_{2}$, given by $z=0$, at a unique point. Since a line is specified by two points, it is easy to see that $Y$ is isomorphic to $U \times L_{2} \simeq U \times \mathbb{P}^{1}$.

