
2. The Tangent bundle and projective bundle

Let us give the first non-trivial example of a vector bundle on Pn.
Recall that given any smooth projective variety one can construct the
tangent bundle. Geometrically a tangent vector at x ∈ X is an equiv-
alence class of paths,

γ : (−ε, ε) −→ X

such that γ(0) = x. Two paths are considered equivalent if they have
the same first derivative (one can make sense of this in a way which is
not circular). The set of all tangent vectors based at x is a vector space
of dimension n, TxX. The tangent TX bundle is the set of all tangent
vectors. There is an obvious projection down to X, π : TX −→ X. The
fibre over a point is the tangent bundle. Since X is locally isomorphic
to an open subset of Rn and the tangent bundle of Rn is a product,
it is clear that the tangent bundle is locally a product. The transition
functions are given by the Jacobian of the coordinate change. Thus
the tangent bundle is a bundle.

The algebraic approach to the construction of the tangent bundle
proceeds from a different direction. If X is a variety and x ∈ X is a
point, with local ring OX,x, then the Zariski tangent space is the dual
of

TxX =
m

m2

∗
,

where m is the maximal ideal of the local ring OX,x. In terms of
schemes, one can look at the set of maps

Hom(Spec
C[ε]

〈ε2〉
, X),

where the unique point of

Spec
C[ε]

〈ε2〉

is sent to x. This is again the dual of the Zariski tangent space. If X
is affine, one can construct the sheaf of differentials. One can globalise
this construction in a somewhat bizarre way. Let

∆: X −→ X ×X,

be the diagonal morphism. Let I be the ideal sheaf of the diagonal
sitting inside the product. Then

I
I2
,
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is naturally supported on the diagonal, a copy of X. In fact if X is
smooth this sheaf is locally free and the pullback to X is the cotangent
sheaf Ω1

X , the sheaf of sections of the cotangent bundle.
There is a standard way to construct the tangent and cotangent

bundles on projective space. Recall that as a manifold, Pn is the set
of lines in an (n + 1) dimensional vector space V ' Cn+1. Almost by
definition there is a universal sublinebundle

S ⊂ V × Pn

There is a quotient vector bundle Q, so that we get an exact sequence
of vector bundles

0 −→ S −→ Pn × V −→ Q −→ 0.

A morphism to projective space is given by a line bundle and a choice of
n+1 sections which don’t vanish simultaneously (the universal property
of projective space). In this case the line bundle is the pullback of S∗.
So a morphism of

Spec
C[ε]

〈ε2〉
is given by a choice of deformation of the line bundle S. But if you
deform in the direction of S nothing happens. So the Zariski tangent
space to Pn is

Hom(S,Q) ' Q⊗ S∗.
The exact sequence

0 −→ S −→ Pn × V −→ Q −→ 0.

is the Euler sequence. At the level of sheaves we have

0 −→ OPn(−1) −→ On+1
Pn −→ TX(−1) −→ 0.

If we tensor by OPn we get

0 −→ OPn −→ On+1
Pn (1) −→ TX −→ 0.

This second map sends (l0, l1, . . . , ln) to∑
li
∂

∂xi
.

The kernel is (x0, x1, . . . , xn) as∑
xi

∂

∂xi

is radial.
If E is a vector bundle of rank r we can associate a projective bundle

over X.
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Definition 2.1. A projective bundle Y on a complex projective vari-
ety X is a projective variety together with a holomorphic map π : Y −→
X and an open cover {Uα } of X such that

Y |Uα = π−1(Uα)

is isomorphic to the product Uα × Pr over Uα,
E|Uα - Uα × Pr

Uα,
�

-

such that on the overlap

Uαβ = Uα ∩ Uβ,
the transition functions are linear functions on Pr.

If E is a vector bundle then one can construct the associated pro-
jective bundle, P(E). By definition of E, we can find an open cover
{Uα } of X such that Eα ' X × Cr. For the associated projective
bundle, Y = P(E), let Yα ' X × Pr−1. As the transition functions of
E are given by linear functions then so are the transition functions for
Y . Thus Y is a projective bundle.

One can also make this construction algebraically. Y comes with a
locally free sheaf OY (1) of rank one. Fibre by fibre it restricts to the
sheaf OPr−1(1). Note that two vector bundles E1 and E2 give rise to
isomorphic projective bundles Y1 and Y2 if and only if there is a line
bundle L such that E1 = L2 ⊗

OX
E2. In fact one direction is clear, since

tensoring by a line bundle won’t change the fibres of the projective
bundle, the transition functions of Y1 and Y2 are the same. Thus Y1
and Y2 are isomorphic. Note however that the tautological rank one
sheaves differ,

OY2(1) = OY1(1) ⊗
OY1

π∗L.

In general, a projective bundle Y over X won’t come from a vector
bundle. It will come from a vector bundle if the open cover trivialising
Y over X are Zariski open subsets and X is smooth. In this case,
there is a divisor D on Y , which restricts to the general fibre of π as
a hyperplane. Just take the closure of the inverse image of Uα × H,
where H is a hyperplane in Pr−1. Consider the associated rank one
locally free sheaf OY (D). Standard results imply that

E = π∗(OY (D)),

is a locally free sheaf of rank r.
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However there are examples of projective bundles which are triv-
ial in the Euclidean topology which don’t come from vector bundles.
Consider the exact sequence of algebraic groups,

0 −→ C∗ −→ GL(r) −→ PGL(r) −→ 0.

One can sheafify this sequence to get

0 −→ O∗X −→ GL(r) −→ PGL(r) −→ 0.

Taking the long exact sequence of cohomology we get

H1(X,O∗X) −→ H1(X,GL(r)) −→ H1(X,PGL(r)) −→ H2(X,O∗X).

Note that is does make sense to take cohomology of a sheaf of non-
abelian groups. Note however that higher cohomology is no longer a
group, just a pointed set. The cohomology set

H1(X,GL(r))

classifies vector bundles of rank r. The cohomology set

H1(X,PGL(r))

classifies projective bundles of rank r−1. The map between them is the
natural map which assigns to a vector bundle the associated projective
bundle. The kernel of this map is

H1(X,O∗X)

which as we have already seen classifies line bundles on X. However
the last map

H1(X,PGL(r)).H2(X,O∗X).

is not always zero. The image is the Brauer group; it classifies projec-
tive bundles over X which are not Zariski trivial.

There is a fun example of a P1-bundle over P2. Let

Y = { (x, L) |x ∈ L } ⊂ P2 × P2

be the incidence correspondence between points and lines on P2. In
coordinates [x : y : z] on the first P2 and [a : b : c] on the second P2, Y
is given by the bihomogeneous equation

ax+ by + cz = 0.

Consider projection π of Y down to the first P2. The fibre over a point
[x : y : z] is the set of all lines this point. Fix the point p = [0 : 0 : 1].
The set of lines through p is given by c = 0, so that we get the line
[a : b : 0] ⊂ P2. Thus the fibres of π are copies of P1. Now suppose we
look at the affine open subset z 6= 0 of P2.

We can use point-slope to see that Y is trivial over U = A2 = (z 6= 0).
More geometrically, a line through the point [x : y : z] will meet the
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line L2, given by z = 0, at a unique point. Since a line is specified by
two points, it is easy to see that Y is isomorphic to U × L2 ' U × P1.
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