7. Uniform bundles

We want to study vector bundles whose splitting type does not depend on the line. Recall that the Grassmannian $G(1,n)$ parametrises the lines in \mathbb{P}^n. The incidence correspondence is the closed subset

$$I = \{ (p,L) \in \mathbb{P}^n \times G(1,n) \mid p \in L \} \subset \mathbb{P}^n \times G(1,n).$$

There are two natural projections

$$I \overset{g}{\longrightarrow} G(1,n), \quad \mathbb{P}^n \overset{f}{\longrightarrow} I.$$

The fibre of g over a point $[L]$ is the whole line L. The fibre of f over a point p is the set of lines through p. Pick an auxiliary hyperplane H, not passing through p. Then a line L through intersects H in a unique point q. Vice-versa, given a point $q \in H$ there is a unique line $L = \langle p,q \rangle$ through p and q, and this line meets H in the point q. Thus the fibre over f is a copy of H.

If we look at the subset $G(p) \subset G(1,n)$ of all lines containing p then the inverse image $B(p)$ of $G(p)$ inside I is almost by definition the blow up of \mathbb{P}^n at the point p.

g realises I as the universal line over the Grassmannian. There is a natural associated rank two vector bundle S to I,

$$S \subset G(1,n) \times V,$$

where $\mathbb{P}^n = \mathbb{P}(V)$. S is the universal rank two sub bundle of the trivial vector bundle of rank $n+1$ on $G(1,n)$. I is the projectivisation of S.

Theorem 7.1. Let E be a vector bundle of rank r on \mathbb{P}^n. Fix a point p.

If $E|_L$ is the trivial vector bundle of rank r for every line L containing p then E is the trivial vector bundle.

Proof. Let $\phi: B(p) \rightarrow \mathbb{P}^n$ be the restriction of f to $B(p)$ so that ϕ is the blow up of p. Let $\gamma: B(p) \rightarrow G(p)$ be the restriction of g to $B(p)$. The fibres of γ are mapped isomorphically by ϕ to lines through p. It follows that ϕ^*E is trivial on the fibres of γ.

Claim 7.2. There is a vector bundle F on $G(1,n)$ such that

$$\phi^*E = \gamma^*F.$$

Assume (7.2). Let D be the exceptional divisor of ϕ. Then the restriction of ϕ^*E to D is the trivial vector bundle of rank r. Let
\(i: D \rightarrow B(p) \) be the inclusion of \(D \) inside \(B(p) \). Then \(\gamma \circ i: D \rightarrow G(p) \) is an isomorphism. \((\gamma \circ i)^*F \) is isomorphic to the restriction of \(F \) to \(D \), which is the trivial vector bundle of rank \(r \). Therefore \(\phi^*E \) is the trivial vector bundle of rank \(r \).

\textbf{Proof of (7.2).} Consider \(\gamma_*\phi^*E \). \(\gamma \) is a \(\mathbb{P}^1 \)-bundle. Therefore \(\gamma \) is smooth and so it is flat. Hence \(\phi^*E \) is flat over \(G(p) \). Let \(M = \gamma^{-1}L \).

As
\[h^0(M, \phi^*E) = h^0(L, E|_L) = h^0(L, \mathcal{O}_L), \]

is constant, it follows by the base change theorem that \(F = \gamma_*\phi^*E \) is locally free of rank \(r \). Consider the natural map
\[\gamma^*\gamma_*\phi^*E \rightarrow \phi^*E \]
The first sheaf restricted to \(M \) is
\[(\gamma^*\gamma_*\phi^*E)|_M \cong \mathcal{O}_M \otimes H^0(M, \phi^*E|_M) \]
and this map becomes the evaluation map
\[\mathcal{O}_M \otimes H^0(M, \phi^*E|_M) \rightarrow (\phi^*E)|_M, \]
which is an isomorphism. \(\square \)

\textbf{Corollary 7.3.} If \(E \) is a globally generated bundle on \(\mathbb{P}^n \) then \(E \) is trivial if and only if \(c_1(E) = 0 \).

\textbf{Proof.} One direction is clear; if \(E \) is trivial then \(c_1(E) = 0 \). As \(E \) is globally generated, it follows that there is an exact sequence
\[0 \rightarrow K \rightarrow \mathcal{O}_{\mathbb{P}^n}^N \rightarrow E \rightarrow 0. \]

If we restrict to a line \(L \) we get
\[0 \rightarrow K|_L \rightarrow \mathcal{O}_L^N \rightarrow E|_L \rightarrow 0. \]

If \((a_1, a_2, \ldots, a_r) \) is the splitting type, then we see that \(a_i \geq 0 \), for all \(i \). On the other hand, as the first chern class is zero, we have \(\sum a_i = 0 \), so that \(a_1 = a_2 = \cdots = a_r = 0 \). It follows that \(E \) is trivial on every line and so we can apply \(\square \).

\textbf{Lemma 7.4.} Let \(E \) be a vector bundle of rank \(r \).

Then the splitting type is upper semi continuous on \(\mathbb{G}(1, n) \).
Proof. It is not hard to see that the splitting type decomposes $G(1, n)$ into constructible subsets. We just have to show that the splitting type never goes down under specialisation. Suppose that L is a line with splitting type (a_1, a_2, \ldots, a_r). By an obvious induction it suffices to prove that the initial part (a_1, a_2, \ldots, a_k) is upper semi continuous. We may assume that we are given a curve $C \subset G(1, n)$ and we may assume that $(a_1, a_2, \ldots, a_{k-1})$ is constant. Let a be the generic value of a_k over the curve C. Since global sections of $E(-a)$ can only jump up, it follows that a_k can only jump up. □

Theorem 7.5. Let E be a uniform vector bundle of rank r on \mathbb{P}^n. If $r < n$ then E splits.

Proof. We proceed by induction on the rank r. If $r = 1$ there is nothing to prove.

Let (a_1, a_2, \ldots, a_r) be the splitting type. Suppose that $a_1 = a_2 = \cdots = a_k$ and $a_{k+1} < a_k$. Replacing E by $E(-a_1)$ we may assume that $a_k = 0$. If $k = r$ we may apply (7.1) to conclude that E splits.

Our goal is to find a uniform rank vector bundle F of smaller rank than E and an exact sequence

$$0 \rightarrow F \rightarrow E \rightarrow Q \rightarrow 0,$$

where Q is a uniform vector bundle.

Suppose we can find such a short exact sequence. By induction F and Q split. It follows that $F \otimes Q^*$ splits, so that the extension splits as

$$\text{Ext}^1_{\mathbb{P}^n}(Q, F) \simeq H^1(\mathbb{P}^n, F \otimes Q^*) = 0.$$

To construct F, proceed as before. Consider $f^* E$. For the fibres M of f, we have

$$f^* E|_M \simeq \mathcal{O}_M^k \oplus E_1,$$

where E_1 is a direct sum of line bundles with negative twists, so that it has no global sections. Thus $\gamma_* f^* E$ is a vector bundle of rank k. As before, consider the natural map

$$g^* g_* f^* E \rightarrow f^* E$$

The first sheaf restricted to M is

$$(g^* g_* f^* E)|_M \simeq \mathcal{O}_M \otimes H^0(M, f^* E|_M)$$

and this map becomes the evaluation map

$$\mathcal{O}_M \otimes H^0(M, f^* E|_M) \rightarrow (f^* E)|_M,$$
which gives a rank k sub vector bundle. This gives us a short exact sequence of vector bundles on the blow up,

$$0 \longrightarrow F_1 \longrightarrow f^*E \longrightarrow Q_1 \longrightarrow 0,$$

We check that all three bundles are pulled back from \mathbb{P}^n. As before it suffices to prove that F_1 and Q_1 are trivial on the fibres of p. Suppose we restrict to $I_p = f^{-1}(p)$. We get an exact sequence

$$0 \longrightarrow F_1|_{I_p} \longrightarrow \mathcal{O}_{I_p} \longrightarrow Q_1|_{I_p} \longrightarrow 0,$$

If we take total chern classes we get

$$c(F_1|_{I_p})c(Q_1|_{I_p}) = c(\mathcal{O}_{I_p}) = 1.$$

As $r < n$ this forces

$$c(F_1|_{I_p}) = c(Q_1|_{I_p}) = 1.$$

In particular

$$c_1(F_1|_{I_p}) = c_1(Q_1|_{I_p}) = 0.$$

As $Q_1|_{I_p}$ is globally generated, we have $Q_1|_{I_p}$ is a trivial bundle. Taking duals, we get the same conclusion for F_1. Thus they are both pulled back from \mathbb{P}^n. □

There is an interesting way to represent uniform vector bundles on \mathbb{P}^n. Suppose that E is a uniform bundle on \mathbb{P}^n and suppose that we think of the splitting type as a partition, so that we have pairs (a_i, r_i), where $a_1 > a_2 > a_3 > \cdots > a_k$ and E has r_i direct summands of the form $\mathcal{O}_{\mathbb{P}^n}(a_i)$. Then there is a filtration

$$0 = F^0 \subset F^1 \subset F^2 \subset \cdots F^k = f^*E$$

of f^*E by sub bundles F^i such that

$$\frac{F^i}{F^{i-1}} = g^*G_i \otimes \mathcal{O}_{\mathbb{P}^n}(a_i)$$

This filtration is called the **Harder-Narasimhan filtration** of f^*E.

It is constructed as follows. Let

$$F^1 = g^*(g_*f^*E(-a_1)) \otimes f^*\mathcal{O}_{\mathbb{P}^n}(a_i).$$

Note that $g_*f^*E(-a_1)$ is a vector bundle of rank k_1 on $\mathbb{G}(1, n)$. As before, F^1 is a sub bundle of f^*E. Let

$$Q_1 = \frac{f^*E}{F^1}$$

be the quotient. The idea is simply to keep going. Let

$$\pi : f^*E \longrightarrow Q_1,$$
be the quotient map. Then

\[F^2 = \pi^{-1}(g^*g_* (Q_1(-a_2)) \otimes f^*\mathcal{O}_{\mathbb{P}^n}(a_2)) \]

is a sub bundle of \(f^*E \) that contains \(F^1 \). Form the quotient

\[Q_2 = \frac{f^*E}{F^2} \]

and keep going.

The other direction is much easier. If we have such a filtration, its restriction to a line \(L \) defines a sequence of short exact sequences, which must all split.