8. UnIFORM HETEROGENEOUS EXAMPLES

We are going to give an example of a bundle which is uniform, meaning that the splitting type is constant, but not homogeneous, so that the bundle is not fixed under the action of the automorphism group of \mathbb{P}^{n}.

Definition 8.1. We say that a vector bundle E is k-homogeneous if $\phi_{1}^{*} E \simeq \phi_{2}^{*} E$ for all linear maps $\phi_{1}: \mathbb{P}^{k} \longrightarrow \mathbb{P}^{n}$ and $\phi_{2}: \mathbb{P}^{k} \longrightarrow \mathbb{P}^{n}$.

Note that E is homogeneous if and only if it is n-homogeneous and it is uniform if and only if it is 1-homogeneous. Since every linear map can be extended from \mathbb{P}^{k} to \mathbb{P}^{k+1}, for $k<n$ it follows that $(k+1)$ homogeneous implies k-homogeneous.

Definition 8.2. The maximum k such that E is k-homogeneous, denoted $h(E)$, is called the extent of E.

If the rank r of E is less than $n, r<n$, then either E splits, in which case E is homogeneous or E is not uniform. Thus

$$
h(E)=0 \quad \text { or } \quad h(E)=n
$$

when $r<n$.
Theorem 8.3. Let $n \neq 2$. For every $0 \leq e<n-1$ there is a holomorphic vector bundle E on \mathbb{P}^{n} with extent e.

Proof. We start with the Euler sequence,

$$
0 \longrightarrow \mathcal{O}_{\mathbb{P}^{n}}(-1) \longrightarrow \mathcal{O}_{\mathbb{P}^{n}}^{\oplus n+1} \longrightarrow T_{\mathbb{P}^{n}}(-1) \longrightarrow 0
$$

The first bundle is the universal sub line bundle. So the bundle

$$
T_{\mathbb{P}^{n}}(-1)
$$

is the quotient of the trivial bundle $\mathbb{P}^{n} \times V$ by the universal sub line bundle S, where $\mathbb{P}^{n}=\mathbb{P}(V)$.

Pick a basis $w_{0}, w_{1}, \ldots, w_{n}$ of V. These determine sections

$$
s_{i} \in H^{0}\left(\mathbb{P}^{n}, T_{\mathbb{P}^{n}}(-1)\right)
$$

which at the point p takes the value w_{i} / S_{p}.
As the $w_{0}, w_{1}, \ldots, w_{m}$ are linearly independent, it follows that $s_{0}, s_{1}, \ldots, s_{m}$ have no common zeroes. Thus we get an inclusion

$$
\mathcal{O}_{\mathbb{P}^{n}} \longrightarrow T_{\mathbb{P}^{n}}(-1)^{\oplus m+1}
$$

Let E be the quotient vector bundle, so that there is a short exact sequence

$$
0 \longrightarrow \mathcal{O}_{\mathbb{P}^{n}} \longrightarrow T_{\mathbb{P}^{n}}(-1)^{\oplus m+1} \longrightarrow E \longrightarrow 0
$$

Note that E has rank

$$
(m+1) n-1
$$

Consider what happens if we restrict E to a linear subspace $\mathbb{P}(W) \subset$ $\mathbb{P}(V)$.

Claim 8.4. Let W_{0} be the span of the vectors $w_{0}, w_{1}, \ldots, w_{m}$, let $\Lambda_{0}=$ $\mathbb{P}\left(W_{0}\right)$ and let $\Lambda \subset \mathbb{P}^{n}$ be a k-dimensional linear subspace.
(1) If Λ_{0} is not contained in Λ, then

$$
\left.E\right|_{\Lambda} \simeq T_{\Lambda}(-1)^{\oplus m+1} \oplus \mathcal{O}_{\Lambda}^{\oplus(n-k)(m+1)-1}
$$

(2) If Λ_{0} is contained in Λ, then

$$
\left.E\right|_{\Lambda} \simeq E^{\prime} \oplus \mathcal{O}_{\Lambda}^{\oplus(n-k)(m+1)}
$$

where E^{\prime} is a bundle on Λ such that $h^{0}\left(\Lambda, E^{*}\right)=0$.
If we assume the claim then note that

$$
h^{0}\left(\Lambda,\left.E^{*}\right|_{\Lambda}\right)= \begin{cases}(n-k)(m+1)-1 & \text { otherwise } \\ (n-k)(m+1) & \text { if } \Lambda_{0} \subset \Lambda\end{cases}
$$

In particular if $k=m-1$ then we are always in the first case, so that E is $(m-1)$-homogeneous. If $k=m$ then there are two possibilities for $h^{0}\left(\Lambda,\left.E\right|_{\Lambda}\right)$ so that the E is not m-homogeneous. Thus the extent of E is $m-1$.

Proof of (8.4). First suppose that Λ_{0} is not contained in Λ. Then we may assume that w_{0} is not contained in W. It follows that the restriction of

$$
s_{0} \in H^{0}\left(\mathbb{P}^{n}, T_{\mathbb{P}^{n}}(-1)\right)
$$

to Λ is nowhere zero. s_{0} defines a short exact sequence

$$
\left.0 \longrightarrow \mathcal{O}_{\Lambda} \longrightarrow T_{\mathbb{P}^{n}}(-1)\right)\left.\right|_{\Lambda} \longrightarrow Q \longrightarrow 0,
$$

where Q is a vector bundle of rank $n-1$ on Λ. There is also an exact sequence

$$
\left.0 \longrightarrow T_{\Lambda}(-1) \longrightarrow T_{\mathbb{P}^{n}(-1)}^{2}\right|_{\Lambda} \longrightarrow \mathcal{O}_{\Lambda}{ }^{\oplus(n-k)} \longrightarrow 0
$$

This gives a commutative diagram with exact rows and colummns

The bottom row yields the isomorphism

$$
Q^{\prime} \simeq \mathcal{O}_{\Lambda}^{\oplus n-k-1}
$$

and so the right column gives the isomorphism

$$
Q \simeq T_{\Lambda}(-1) \oplus \mathcal{O}_{\Lambda}^{\oplus n-k-1}
$$

since

$$
H^{1}\left(\Lambda, T_{\Lambda}(-1)\right)=0
$$

We now consider another similar diagram.

Now the last column splits as

$$
H^{1}\left(\Lambda,\left.Q^{*} \otimes T_{\Lambda}(-1)^{\oplus m}\right|_{\Lambda}\right)=0
$$

It follows then that

$$
\begin{aligned}
\left.E\right|_{\Lambda} & =\left.T_{\mathbb{P}^{n}}(-1)^{\oplus m}\right|_{\Lambda} \oplus T_{\Lambda}(-1) \oplus \mathcal{O}_{\Lambda}^{\oplus n-k-1} \\
& =\left.T_{\Lambda}(-1)^{\oplus m+1}\right|_{\Lambda} \oplus \mathcal{O}_{\Lambda}^{\oplus(n-k)(m+1)-1} .
\end{aligned}
$$

Now suppose that $\Lambda_{0} \subset \Lambda$.

From the top row we get

$$
\begin{aligned}
h^{0}\left(\Lambda, E^{\prime *}\right) & =0 \\
h^{1}\left(\Lambda, E^{\prime}\right) & =0 .
\end{aligned}
$$

From the last column we then deduce

$$
\left.E\right|_{\Lambda} \simeq E^{\prime} \oplus \mathcal{O}_{\Lambda}^{\oplus(n-k)(m+1)}
$$

If we take $m=2$ then the rank of E is $3 n-1$ and E is not homogeneous but it is uniform.

