8. Uniform heterogeneous examples

We are going to give an example of a bundle which is uniform, meaning that the splitting type is constant, but not homogeneous, so that the bundle is not fixed under the action of the automorphism group of \(\mathbb{P}^n \).

Definition 8.1. We say that a vector bundle \(E \) is \(k \)-homogeneous if \(\phi_1^* E \simeq \phi_2^* E \) for all linear maps \(\phi_1 : \mathbb{P}^k \to \mathbb{P}^n \) and \(\phi_2 : \mathbb{P}^k \to \mathbb{P}^n \).

Note that \(E \) is homogeneous if and only if it is \(n \)-homogeneous and it is uniform if and only if it is 1-homogeneous. Since every linear map can be extended from \(\mathbb{P}^k \) to \(\mathbb{P}^{k+1} \), for \(k < n \) it follows that \((k+1)\)-homogeneous implies \(k \)-homogeneous.

Definition 8.2. The maximum \(k \) such that \(E \) is \(k \)-homogeneous, denoted \(h(E) \), is called the extent of \(E \).

If the rank \(r \) of \(E \) is less than \(n \), \(r < n \), then either \(E \) splits, in which case \(E \) is homogeneous or \(E \) is not uniform. Thus
\[
h(E) = 0 \quad \text{or} \quad h(E) = n,
\]
when \(r < n \).

Theorem 8.3. Let \(n \neq 2 \). For every \(0 \leq e < n - 1 \) there is a holomorphic vector bundle \(E \) on \(\mathbb{P}^n \) with extent \(e \).

Proof. We start with the Euler sequence,
\[
0 \longrightarrow \mathcal{O}_{\mathbb{P}^n}(-1) \longrightarrow \mathcal{O}_{\mathbb{P}^n}^{\oplus n+1} \longrightarrow T_{\mathbb{P}^n}(-1) \longrightarrow 0.
\]
The first bundle is the universal sub line bundle. So the bundle
\[
T_{\mathbb{P}^n}(-1)
\]
is the quotient of the trivial bundle \(\mathbb{P}^n \times V \) by the universal sub line bundle \(S \), where \(\mathbb{P}^n = \mathbb{P}(V) \).

Pick a basis \(w_0, w_1, \ldots, w_n \) of \(V \). These determine sections
\[
s_i \in H^0(\mathbb{P}^n, T_{\mathbb{P}^n}(-1))
\]
which at the point \(p \) takes the value \(w_i / S_p \).

As the \(w_0, w_1, \ldots, w_m \) are linearly independent, it follows that \(s_0, s_1, \ldots, s_m \) have no common zeroes. Thus we get an inclusion
\[
\mathcal{O}_{\mathbb{P}^n} \longrightarrow T_{\mathbb{P}^n}(-1)^{\oplus m+1}.
\]
Let \(E \) be the quotient vector bundle, so that there is a short exact sequence
\[
0 \longrightarrow \mathcal{O}_{\mathbb{P}^n} \longrightarrow T_{\mathbb{P}^n}(-1)^{\oplus m+1} \longrightarrow E \longrightarrow 0.
\]
Note that E has rank

$$(m + 1)n - 1.$$

Consider what happens if we restrict E to a linear subspace $\mathbb{P}(W) \subset \mathbb{P}(V)$.

Claim 8.4. Let W_0 be the span of the vectors w_0, w_1, \ldots, w_m, let $\Lambda_0 = \mathbb{P}(W_0)$ and let $\Lambda \subset \mathbb{P}^n$ be a k-dimensional linear subspace.

1. If Λ_0 is not contained in Λ, then

$$E|_\Lambda \simeq T_\Lambda(-1)^{\oplus m+1} \oplus \mathcal{O}_\Lambda^{\oplus (n-k)(m+1)-1}.$$

2. If Λ_0 is contained in Λ, then

$$E|_\Lambda \simeq E' \oplus \mathcal{O}_\Lambda^{\oplus (n-k)(m+1)},$$

where E' is a bundle on Λ such that $h^0(\Lambda, E^*) = 0$.

If we assume the claim then note that

$$h^0(\Lambda, E^*|_\Lambda) = \begin{cases} (n - k)(m + 1) - 1 & \text{otherwise} \\ (n - k)(m + 1) & \text{if } \Lambda_0 \subset \Lambda. \end{cases}$$

In particular if $k = m - 1$ then we are always in the first case, so that E is $(m - 1)$-homogeneous. If $k = m$ then there are two possibilities for $h^0(\Lambda, E|_\Lambda)$ so that the E is not m-homogeneous. Thus the extent of E is $m - 1$.

Proof of Claim 8.4. First suppose that Λ_0 is not contained in Λ. Then we may assume that w_0 is not contained in W. It follows that the restriction of

$$s_0 \in H^0(\mathbb{P}^n, T_{\mathbb{P}^n}(-1))$$

to Λ is nowhere zero. s_0 defines a short exact sequence

$$0 \rightarrow \mathcal{O}_\Lambda \rightarrow T_{\mathbb{P}^n}(-1)|_\Lambda \rightarrow Q \rightarrow 0,$$

where Q is a vector bundle of rank $n - 1$ on Λ. There is also an exact sequence

$$0 \rightarrow T_\Lambda(-1) \rightarrow T_{\mathbb{P}^n}(-1)|_\Lambda \rightarrow \mathcal{O}_\Lambda^{\oplus (n-k)} \rightarrow 0.$$
This gives a commutative diagram with exact rows and columns

\[
\begin{array}{ccc}
0 & 0 \\
\downarrow & \downarrow \\
T_{\Lambda}(-1) = T_{\Lambda}(-1) \\
\downarrow & \downarrow \\
0 \to O \to \Lambda \to T_{\mathbb{P}^n}(1)|_{\Lambda} \to Q \to 0 \\
\parallel & \downarrow & \downarrow \\
0 \to O \to O_{\Lambda} \oplus m \to \Lambda \to Q' \to 0 \\
\downarrow & \downarrow \\
0 & 0 \\
\end{array}
\]

The bottom row yields the isomorphism

\[Q' \simeq O_{\Lambda}^\oplus n-k-1\]

and so the right column gives the isomorphism

\[Q \simeq T_{\Lambda}(-1) \oplus O_{\Lambda}^\oplus n-k-1\]

since

\[H^1(\Lambda, T_{\Lambda}(-1)) = 0.\]

We now consider another similar diagram.

\[
\begin{array}{ccc}
0 & 0 \\
\downarrow & \downarrow \\
T_{\mathbb{P}^n}(1)^{\oplus m}|_{\Lambda} = T_{\mathbb{P}^n}(1)^{\oplus m}|_{\Lambda} \\
\downarrow & \downarrow \\
0 \to O_{\Lambda} \to T_{\mathbb{P}^n}(1)^{\oplus m+1}|_{\Lambda} \to E|_{\Lambda} \to 0 \\
\parallel & \downarrow & \downarrow \\
0 \to O_{\Lambda} \to T_{\mathbb{P}^n}(1)|_{\Lambda} \to Q \to 0 \\
\downarrow & \downarrow \\
0 & 0 \\
\end{array}
\]

Now the last column splits as

\[H^1(\Lambda, Q^* \otimes T_{\Lambda}(1)^{\oplus m}|_{\Lambda}) = 0.\]
It follows then that
\[
E|_\Lambda = T_{\mathbb{P}^n}(-1)^{\oplus m}|_\Lambda \oplus T_\Lambda(-1) \oplus O_\Lambda^{\oplus n-k-1} \\
= T_\Lambda(-1)^{\oplus m+1}|_\Lambda \oplus O_\Lambda^{\oplus (n-k)(m+1)-1}.
\]

Now suppose that \(\Lambda_0 \subset \Lambda \).

\[
\begin{array}{cccccc}
0 & 0 & \downarrow & \downarrow \\
\| & \downarrow & \downarrow \\
0 \rightarrow O_\Lambda \rightarrow T_\Lambda(-1)^{\oplus m+1} \rightarrow E' \rightarrow 0 \\
\downarrow & \downarrow & \downarrow \\
0 \rightarrow O_\Lambda \rightarrow T_{\mathbb{P}^n}(-1)^{\oplus m+1}|_\Lambda \rightarrow E|_\Lambda \rightarrow 0 \\
\downarrow & \downarrow & \downarrow \\
O_\Lambda^{\oplus (n-k)(m+1)} = O_\Lambda^{\oplus (n-k)(m+1)} \\
\downarrow & \downarrow & \downarrow \\
0 & 0
\end{array}
\]

From the top row we get
\[
h^0(\Lambda, E'^*) = 0 \\
h^1(\Lambda, E') = 0.
\]
From the last column we then deduce
\[
E|_\Lambda \simeq E' \oplus O_\Lambda^{\oplus (n-k)(m+1)}.
\]

If we take \(m = 2 \) then the rank of \(E \) is \(3n - 1 \) and \(E \) is not homogeneous but it is uniform.