9. Simple bundles

Definition 9.1. A vector bundle is called simple if

$$
h^{0}\left(\mathbb{P}^{n}, E^{*} \otimes E\right)=1
$$

As

$$
E^{*} \otimes E=\operatorname{Hom}_{\mathcal{O}_{\mathbb{P}}}(E, E),
$$

a bundle is simple if and only if its only endomorphisms are homotheties.

Definition 9.2. A vector bundle E on \mathbb{P}^{n} is decomposable if it is isomorphic to a direct sum $F \oplus G$, where F and G have smaller rank than E.

If E is decomposable then it has non-trivial endomorphisms, given by different homotheties on both factors. Thus simple bundles are always indecomposable.

Lemma 9.3. The tangent bundle on \mathbb{P}^{n} is simple.
Proof. We start with the Euler sequence,

$$
0 \longrightarrow \mathcal{O}_{\mathbb{P}^{n}}(-1) \longrightarrow \mathcal{O}_{\mathbb{P}^{n}}^{\oplus n+1} \longrightarrow T_{\mathbb{P}^{n}}(-1) \longrightarrow 0
$$

If we tensor this with $\Omega_{\mathbb{P}^{n}}^{1}(1)$ then we get the exact sequence

$$
0 \longrightarrow \Omega_{\mathbb{P}^{n}}^{1} \longrightarrow \Omega_{\mathbb{P}^{n}}^{1}(1)^{\oplus n+1} \longrightarrow \Omega_{\mathbb{P}^{n}}^{1} \otimes T_{\mathbb{P}^{n}} \longrightarrow 0
$$

Taking the long exact sequence of cohomology we get

$$
H^{0}\left(\mathbb{P}^{n}, \Omega_{\mathbb{P}^{n}}^{1}(1)^{\oplus n+1}\right) \longrightarrow H^{0}\left(\mathbb{P}^{n}, \Omega_{\mathbb{P}^{n}}^{1} \otimes T_{\mathbb{P}^{n}}\right) \longrightarrow H^{1}\left(\mathbb{P}^{n}, \Omega_{\mathbb{P}^{n}}^{1}\right)
$$

Now

$$
h^{0}\left(\mathbb{P}^{n}, \Omega_{\mathbb{P}^{n}}^{1}(1)^{\oplus n+1}\right)=0 \quad \text { and } \quad h^{1}\left(\mathbb{P}^{n}, \Omega_{\mathbb{P}^{n}}^{1}\right)=1
$$

But then

$$
1 \leq h^{0}\left(\mathbb{P}^{n}, \Omega_{\mathbb{P}^{n}}^{1} \otimes T_{\mathbb{P}^{n}}\right) \leq h^{1}\left(\mathbb{P}^{n}, \Omega_{\mathbb{P}^{n}}^{1}\right)=1 .
$$

It follows that the bundles $T_{\mathbb{P}^{n}}(k)$ and $\Omega_{\mathbb{P}^{n}}^{1}(k)$ are all simple, for any integer k.

Consider the rank two bundles we constructed on \mathbb{P}^{2}. We started with points in $p_{1}, p_{2}, \ldots, p_{k}$ in \mathbb{P}^{2}, looked at the surface $\pi: X \longrightarrow \mathbb{P}^{2}$ you get by blowing up these points, and modified the extension

$$
0 \longrightarrow \mathcal{O}_{X}(C) \longrightarrow E^{\prime} \longrightarrow \mathcal{O}_{X}(-C) \longrightarrow 0,
$$

where C is the sum of the exceptionals, so that E^{\prime} is the pullback of a bundle E on $\mathbb{P}^{2}, E^{\prime}=\pi^{*} E$.

Recall that if L is a line that contains a points then the splitting type is $(a,-a)$. In particular E is indecomposable. We want to show that E is not simple. We will need:

Lemma 9.4. If E is a vector bundle of rank $r>1$ and both $h^{0}\left(\mathbb{P}^{n}, E\right)>$ 0 and $h^{0}\left(\mathbb{P}^{n}, E^{*}\right)>0$ then E is not simple.

Proof. Pick non-zero sections

$$
\sigma \in H^{0}\left(\mathbb{P}^{n}, E\right) \quad \text { and } \quad \tau \in H^{0}\left(\mathbb{P}^{n}, E^{*}\right)
$$

Then

$$
\sigma \otimes \tau \in H^{0}\left(\mathbb{P}^{n}, E^{*} \otimes E\right)
$$

is not a homothety, as it has rank one when restricted to any fibre.
Note that

$$
\begin{aligned}
E^{*} & \simeq E \otimes \operatorname{det} E^{*} \\
& \simeq E,
\end{aligned}
$$

since $c_{1}(E)=0$. On the other hand,

$$
h^{0}\left(\mathbb{P}^{2}, E\right)>0,
$$

by construction, since E^{\prime} contains the sub line bundle $\mathcal{O}_{X}(C)$.
We want to construct a simple bundle N of rank $n-1$ on \mathbb{P}^{n}, for any odd integer n, called the null correlation bundle. We will construct N as the kernel of a surjective map

$$
T_{\mathbb{P}^{n}}(-1) \longrightarrow \mathcal{O}_{\mathbb{P}^{n}}(1)
$$

We get a short exact sequence

$$
0 \longrightarrow N \longrightarrow T_{\mathbb{P}^{n}}(-1) \longrightarrow \mathcal{O}_{\mathbb{P}^{n}}(1) \longrightarrow 0
$$

We first check that N is simple. We tensor the above sequence by N^{*} to get

$$
h^{0}\left(\mathbb{P}^{n}, N^{*} \otimes N\right) \leq h^{0}\left(\mathbb{P}^{n}, N^{*} \otimes T_{\mathbb{P}^{n}}(-1)\right)
$$

Now tensor the dual of the short exact sequence above with $T_{\mathbb{P}^{n}}(-1)$ to get

$$
0 \longrightarrow T_{\mathbb{P}^{n}}(-2) \longrightarrow T_{\mathbb{P}^{n}} \otimes \Omega_{\mathbb{P}^{n}}^{1} \longrightarrow N^{*} \otimes T_{\mathbb{P}^{n}}(-1) \longrightarrow 0
$$

If we take the associated long exact sequence of cohomology we get

$$
H^{0}\left(\mathbb{P}^{n}, T_{\mathbb{P}^{n}} \otimes \Omega_{\mathbb{P}^{n}}^{1}\right) \longrightarrow H^{0}\left(\mathbb{P}^{n}, N^{*} \otimes T_{\mathbb{P}^{n}}(-1)\right) \longrightarrow H^{1}\left(\mathbb{P}^{n}, T_{\mathbb{P}^{n}}(-2)\right)
$$

Now

$$
H^{1}\left(\mathbb{P}^{n}, T_{\mathbb{P}^{n}}(-2)\right)=0
$$

and so

$$
h^{0}\left(\mathbb{P}^{n}, N^{*} \otimes T_{\mathbb{P}^{n}}(-1)\right) \leq h^{0}\left(\mathbb{P}^{n}, T_{\mathbb{P}^{n}} \otimes \Omega_{\mathbb{P}^{n}}^{1}\right)=1
$$

Thus

$$
1 \leq h^{0}\left(\mathbb{P}^{n}, N^{*} \otimes N\right) \leq h_{2}^{0}\left(\mathbb{P}^{n}, N^{*} \otimes T_{\mathbb{P}^{n}}(-1)\right) \leq 1
$$

Now consider the goal of finding a surjective map

$$
T_{\mathbb{P}^{n}}(-1) \longrightarrow \mathcal{O}_{\mathbb{P}^{n}}(1)
$$

Dualising, it suffices to find a nowhwere zero section of $\Omega_{\mathbb{P}^{n}}^{1}(2)$.
Consider the projective bundle

$$
\mathbb{P}\left(\Omega_{\mathbb{P}^{n}}^{1}\right)
$$

over \mathbb{P}^{n}. Point in this bundle correspond to hyperplanes in the tangent bundle, so that

$$
\mathbb{P}\left(\Omega_{\mathbb{P}^{n}}^{1}\right) \simeq\{(x, H) \mid x \in H\} \subset \mathbb{P}^{n} \times \mathbb{P}^{n}
$$

Let

$$
p: \mathbb{P}\left(\Omega_{\mathbb{P}^{n}}^{1}\right) \longrightarrow \mathbb{P}^{n}
$$

be the natural projection. As n is odd, $n+1=2 m$ for some integer m. Let A be the block diagonal $2 m \times 2 m$ matrix with the 2×2 matrix

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Then A is invertible and for all $x \in \mathbb{C}^{n+1}$ we have

$$
\langle A x, x\rangle=0
$$

where

$$
\langle x, y\rangle=\sum x_{i} y_{i},
$$

is the standard inner product. Pick homogeneous coordinates $\left[x_{0}\right.$: $\left.x_{1}: \cdots: x_{n}\right]$ on \mathbb{P}^{n} and $\left[\xi_{0}: \xi_{1}: \cdots: \xi_{n}\right]$ on the dual \mathbb{P}^{n}. In these coordinates, A defines an isomorphism

$$
\Phi: \mathbb{P}^{n} \longrightarrow \mathbb{P}^{n}
$$

such that $x \in H=\Phi(x)$. The graph of Φ defines a section

$$
g: \mathbb{P}^{n} \longrightarrow \mathbb{P}\left(\Omega_{\mathbb{P}^{n}}^{1}\right),
$$

which sends x to $(x, \Phi(x))$. This gives a sub line bundle of $\Omega_{\mathbb{P}^{n}}^{1}$,

$$
\mathcal{O}_{\mathbb{P}^{n}}(a) \longrightarrow \Omega_{\mathbb{P}^{n}}^{1}
$$

Lemma 9.5. $a=-2$.
Proof. Note that

$$
\Omega_{\mathbb{P}^{n}}^{1}(-a)
$$

has a non-vanishing section and so

$$
c_{n}\left(\Omega_{\mathbb{P}^{n}}^{1}(-a)\right)=0 .
$$

We compute

$$
\begin{aligned}
0 & =c_{n}\left(\Omega_{\mathbb{P}^{n}}^{1}(-a)\right) \\
& =-c_{n}\left(T_{\mathbb{P}^{n}}(a)\right) \\
& =-\sum_{i=0}^{n} c_{i}\left(T_{\mathbb{P}^{n}}\right) a^{n-i} \\
& =-\sum_{i=0}^{n}\binom{n+1}{i} a^{n-i} .
\end{aligned}
$$

If we multiply by a we get

$$
\begin{aligned}
0 & =\sum_{i=0}^{n}\binom{n+1}{i} a^{n+1-i} \\
& =(1+a)^{n+1}-1
\end{aligned}
$$

It follows that $1+a= \pm 1$. As $c_{n}\left(T_{\mathbb{P}^{n}}\right)=n+1 \neq 0$, we cannot be in the case $a=0$. Thus $a=-2$.

Putting all of this together, we can construct the null correlation bundle N.

Note that

$$
\begin{aligned}
c(N) & =\frac{c\left(T_{\mathbb{P}^{n}}(-1)\right)}{1+h} \\
& =\frac{1}{(1+h)(1-h)} \\
& =1+h^{2}+h^{4}+h^{6}+\cdots+h^{n-1}
\end{aligned}
$$

Thus we have proved:
Theorem 9.6. For every odd integer n there is a simple bundle N on \mathbb{P}^{n} with total chern class:

$$
c(N)=1+h^{2}+h^{4}+h^{6}+\cdots+h^{n-1}
$$

