FINAL EXAM
 MATH 104C, UCSD, SPRING 18

You have three hours.

There are 9 problems, and the total number of points is 130 . Show all your work. Please make your work as clear and easy to follow as possible.

Name: \qquad
Signature: \qquad
Student ID \#: \qquad

Problem	Points	Score
1	30	
2	15	
3	15	
4	10	
5	10	
6	10	
7	20	
8	10	
9	10	
10	10	
11	10	
12	10	
13	10	
Total	130	

1. (30pts) Give the definition of
(i) norm of an element of $\mathbb{Z}[\sqrt{d}]$.

If $\alpha=a+b \sqrt{d}$ then

$$
N(\alpha)=a^{2}-b^{2} d
$$

(ii) p-adic absolute value.

$$
|m|=\frac{1}{p^{e}}
$$

where p^{e} is the largest power of p dividing m.
(iii) algebraic number of degree n.
$\alpha \in \mathbb{C}$ is algebraic of degree n if there is a polynomial $m(x) \in \mathbb{Q}[x]$ of degree n such that $m(\alpha)=0$ and no lower degree polynomial with the same property.
(iv) Farey sequence \mathcal{F}_{n}.

The sequence of all rational numbers with denominator no bigger than n.
(v) best approximation.
p / q is called a best approximation of x if

$$
\left|q^{\prime} x-p^{\prime}\right| \leq|q x-p|
$$

for some $q^{\prime} \leq q$ implies that $q=q^{\prime}$.
(vi) quadratic irrational.
a real number of degree two.
2. (15pts) (i) Show that the set of numbers represented as the sum of two squares is closed under multiplication.

If $\alpha=a+b i$ and $\beta=c+d i$ then

$$
\begin{aligned}
\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right) & =N(\alpha) N(\beta) \\
& =N(\alpha \beta) \\
& =N(a c-b d+(b c+a d i) \\
& =(a c-b d)^{2}+(b c+a d)^{2} .
\end{aligned}
$$

(ii) Show that every prime $\rho \in \mathbb{Z}[i]$ divides some rational prime.

Let

$$
\begin{aligned}
\rho \bar{\rho} & =N(\rho) \\
& =n \in \mathbb{N} .
\end{aligned}
$$

Thus ρ divides n. Let

$$
n=p_{1} p_{2} \ldots p_{k}
$$

be the prime factorisation of n.
As ρ is a prime it must divide one of the factors of n. Thus ρ divides a prime.
(iii) Show that $(1+i) \mid(a+b i)$ if and only if $a \equiv b \bmod 2$.

Suppose that $(1+i) \mid(a+b i)$. If we take the norm of both sides then we get

$$
\begin{gathered}
2=N(1+i) \\
\mid N(a+b i) \\
=a^{2}+b^{2} .
\end{gathered}
$$

As 2 divides $a^{2}+b^{2}, a$ and b must have the same parity.
Now suppose that a and b have the same parity. If a and b are even, so that $a=2 k$ and $b=2 l$ then $1+i$ divides $a+b i=2(k+l i)$ as $1+i$ divides $2=(1+i)(1-i)$. If a and b are both odd then consider

$$
\begin{aligned}
\alpha & =(a+b i) \\
& =(a-1)+(b-1) i+(1+i) \\
& =\beta+(1+i) .
\end{aligned}
$$

As the components of β are even, it follows that $1+i$ divides β and so $1+i$ divides α.
3. (15pts) Show that the general integral solution of the equation

$$
x^{2}+y^{2}=z^{2}
$$

is of the form

$$
x=c\left(a^{2}-b^{2}\right) \quad y=2 a b c \quad \text { and } \quad z=c\left(a^{2}+b^{2}\right)
$$

where $2 c \in \mathbb{Z}$.

Consider lines through $(-1,0)$. These have the form

$$
y=m(x+1)
$$

If we subsitute this into the equation of the circle $x^{2}+y^{2}=1$ we get $x^{2}+m^{2}(x+1)^{2}=1 \quad$ so that $\quad\left(m^{2}+1\right) x^{2}+2 m^{2} x+\left(m^{2}-1\right)=0$.
One solution is $x=-1$ and so it follows that the other is

$$
x=\frac{1-m^{2}}{1+m^{2}} \quad \text { so that } \quad y=\frac{2 m}{1+m^{2}}
$$

As m ranges over the rational numbers, this gives all rational solutions of the equation $x^{2}+y^{2}=1$, since if m is rational then x and y are rational and if x and y are rational then so is the slope.
If $m=a / b$ then

$$
x=\frac{a^{2}-b^{2}}{a^{2}+b^{2}} \quad \text { and } \quad y=\frac{2 a b}{a^{2}+b^{2}} .
$$

x / z and y / z are solutions of $u^{2}+v^{2}=1$ if and only if x, y and z are solutions of $x^{2}+y^{2}=z^{2}$. Multitplying through by $c\left(a^{2}+b^{2}\right)$ to clear denominators we get the solution

$$
x=c\left(a^{2}-b^{2}\right) \quad y=2 a b c \quad \text { and } \quad z=c\left(a^{2}+b^{2}\right)
$$

Note that c need not be an integer, since the original x and y need not be in their lowest terms. However as $z+x$ and $z-x$ are integers, it follows that $2 c \in \mathbb{Z}$.
4. (10pts) Show that if p is an odd prime and a is coprime to p then the equation

$$
x^{2}=a
$$

has two solutions in the p-adic integers if and only if a is a quadratic residue of p.

If

$$
\alpha=a_{0}+a_{1} p+a_{2} p^{2}+\ldots
$$

is a solution of $x^{2}=a$ then certainly $a_{0}^{2} \equiv a \bmod p$ so that a is a quadratic residue modulo p.
Now suppose that a is a quadratic residue modulo p. Pick a_{0} so that $a_{0}^{2} \equiv a \bmod p$. We will construct a sequence of integers in the range 0 to $p-1$ so that

$$
\alpha_{n}=a_{0}+a_{1} p+\cdots+a_{n} p^{n}
$$

is a solution modulo p^{n+1} by induction on n. Let $f(x)=x^{2}-a$. Then $f^{\prime}(x)=2 x$. Having chosen $a_{0}, a_{1}, \ldots, a_{n}, a_{n+1}=a_{n}+t p^{n+1}$. We have to choose t such that

$$
f\left(\alpha_{n}+t p^{n+1}\right) \equiv f\left(\alpha_{n}\right)+2 t p^{n+1} \equiv 0 \quad \bmod p^{n+2}
$$

Since $f\left(\alpha_{n}\right)$ is divisible by p^{n+1} we can always find integers $0 \leq t p-1$ satisfying this equation. This defines a_{n+1}.
Taking the limit gives a p-adic integer. We get two different solutions, one for each choice of a_{0}.
5. (10pts) Find the general solution of the equation

$$
x^{2}-2 y^{2}=1
$$

We just have to find the fundamental solution. One way to find this is to compute the continued fraction expansion of $\sqrt{2} . \sqrt{2}=1+\sqrt{2}-1$.

$$
\begin{aligned}
\frac{1}{\sqrt{2}-1} & =\sqrt{2}+1 \\
& =2+\sqrt{2}-1
\end{aligned}
$$

Thus

$$
\sqrt{2}=[1 ; \overline{2}] .
$$

The convergents are

$$
\frac{1}{1} \quad \frac{3}{2}
$$

and indeed

$$
3^{2}-2^{2} \cdot 2=1
$$

Thus the fundamental solution is

$$
\delta=3+2 \sqrt{2}
$$

One can also find this solution by trial and error. It follows that the general solution is

$$
\pm(3+2 \sqrt{2})^{n}
$$

where n is an integer.
6. (10pts) If δ is the fundamental solution of the equation

$$
x^{2}-d y^{2}=1
$$

then show that every solution has the form $\pm \delta^{n}$.

Let α be a non-trivial solution of

$$
x^{2}-d y^{2}=1
$$

Note that

$$
\begin{array}{ccccc}
\alpha & \bar{\alpha} & -\bar{\alpha} & \text { and } & -\alpha
\end{array}
$$

are also solutions. Replacing α by one of these four solutions, we may assume that the coefficients of α are positive and it suffices to find a natural number n such that

$$
\alpha=\delta^{n}
$$

Note that $\delta \leq \alpha$ by minimality of δ. Let n be the largest natural number such that

$$
\delta^{n} \leq \alpha<\delta^{n+1}
$$

Let

$$
\beta=\frac{\alpha}{\delta^{n}} .
$$

By assumption

$$
1 \leq \beta<\delta
$$

We have

$$
\begin{aligned}
N(\beta) & =N(\alpha) N\left(\delta^{-n}\right) \\
& =1
\end{aligned}
$$

Thus β is also a solution of

$$
x^{2}-d y^{2}=1
$$

It follows that $\beta=1$ by minimality of δ. But then

$$
\alpha=\delta^{n}
$$

7. (20pts) (i) If $|p s-q r|=1$ then p / q and r / s are adjacent in \mathcal{F}_{n} for

$$
\max (q, s) \leq n<q+s
$$

and they are separated by the single element $(p+r) /(q+s)$ in \mathcal{F}_{q+s}.

We may assume that $p / q<r / s$ so that $q r-p s=1$. Let

$$
f:[0, \infty] \longrightarrow\left[\frac{p}{q}, \frac{r}{s}\right] \quad \text { given by } \quad f(t)=\frac{p+t r}{q+t s}
$$

Then f is a monotonic increasing function, so that f is a bijection. It is clear that f induces a bijection between the rational points of both intervals. Let $t=u / v$. Then

$$
f\left(\frac{u}{v}\right)=\frac{p v+u r}{q v+u s}
$$

As

$$
\begin{aligned}
& q(v p+u r)-p(v q+u s)=u(q r-p s)=u \\
& s(v p+u r)-r(v q+u s)=v(p s-q r)=-v
\end{aligned}
$$

it follows that $v p+u r$ is coprime to $v q+u s$, thus $f(u / v)$ is expressed in its lowest terms.
It is then clear that the rational number between p / q and r / s with the smallest denominator is given by $u=v=1$.
(ii) If p / q and r / s are adjacent in \mathcal{F}_{n} for some n then $|p s-q r|=1$.

We prove this by induction on n. If $n=1$ then $q=s=1$ and p and $r=p \pm 1$ are adjacent integers. The result is clear in this case.
If we go from n to $n+1$ we just need to check the result for the integers we just added. If p / q and r / s are adjacent in \mathcal{F}_{n} then we can only add

$$
\frac{p+r}{q+s}
$$

between them in \mathcal{F}_{n}. We have

$$
|(p+r) q-(q+s) p|=1 \quad \text { and } \quad|r(q+s)-s(p+r)|=1
$$

and this completes the induction.
8. (10pts) Find all of the best approximations of 339/62.

We have

$$
\begin{aligned}
\xi & =\frac{339}{62} \\
& =5+\frac{29}{62} .
\end{aligned}
$$

Thus $a_{0}=5$ and

$$
\begin{aligned}
\xi_{1} & =\frac{62}{29} \\
& =2+\frac{4}{29} .
\end{aligned}
$$

Thus $a_{2}=2$ and

$$
\begin{aligned}
\xi_{2} & =\frac{29}{4} \\
& =7+\frac{1}{4} .
\end{aligned}
$$

Thus $a_{2}=7$ and $a_{3}=4$. It follows that

$$
\frac{339}{62}=[5 ; 2,7,4] .
$$

The convergents are:

$$
\frac{5}{1} \quad \frac{11}{2} \quad \frac{82}{15} \quad \text { and } \quad \frac{339}{62}
$$

and these are the best approximations.
9. (10pts) Show that if ξ and η have the same initial partial quotients $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ and $\xi<\theta<\eta$ then θ has the same initial partial quotients.

As $\xi<\theta<\eta$, it follows that

$$
a_{0}=\llcorner\xi\lrcorner \leq\llcorner\theta\lrcorner \leq\llcorner\eta\lrcorner=a_{0} .
$$

Thus

$$
a_{0}=\llcorner\theta\lrcorner .
$$

Moreover, it then follows that

$$
\{\xi\}<\{\theta\}<\{\eta\} .
$$

Taking reciprocals

$$
\eta_{1}<\theta_{1}<\xi_{1} .
$$

As the partial quotients of η_{1} and ξ_{1} are $a_{1}, a_{2}, \ldots, a_{n}$, we are done by induction on n.

Bonus Challenge Problems

10. (10pts) Describe all solutions of $x^{2}-d y^{2}=4$.

See Propopsition 12.5.
11. (10pts) Show that if ξ is irrational then there are infinitely many rational numbers p / q such that

$$
\left|\xi-\frac{p}{q}\right|<\frac{1}{\sqrt{5} q^{2}} .
$$

See the proof of Theorem 15.5.
12. (10pts) Show that ξ is a quadratic irrational if and only if its continued fraction is eventually periodic.

See the proof of Theorem 19.1.
13. (10pts) Prove Legendre's theorem.

See the proof of Theorem 7.1.

