FINAL EXAM MATH 104C, UCSD, SPRING 18

You have three hours.

Problem	Points	Score
1	30	
2	15	
3	15	
4	10	
5	10	
6	10	
7	20	
8	10	
9	10	
10	10	
11	10	
12	10	
13	10	
Total	130	

There are 9 problems, and the total number of points is 130. Show all your work. *Please make your work as clear and easy to follow as possible.*

Name:_____

Signature:_____

Student ID #:_____

- 1. (30pts) Give the definition of
- (i) norm of an element of $\mathbb{Z}[\sqrt{d}]$.

If $\alpha = a + b\sqrt{d}$ then

$$N(\alpha) = a^2 - b^2 d.$$

(ii) *p*-adic absolute value.

$$|m| = \frac{1}{p^e}$$

where p^e is the largest power of p dividing m.

(iii) algebraic number of degree n.

 $\alpha \in \mathbb{C}$ is algebraic of degree n if there is a polynomial $m(x) \in \mathbb{Q}[x]$ of degree n such that $m(\alpha) = 0$ and no lower degree polynomial with the same property.

(iv) Farey sequence \mathcal{F}_n .

The sequence of all rational numbers with denominator no bigger than n.

(v) best approximation.

p/q is called a best approximation of x if $|q'x-p'|\leq |qx-p|$ for some $q'\leq q$ implies that q=q'.

(vi) quadratic irrational.

a real number of degree two.

2. (15pts) (i) Show that the set of numbers represented as the sum of two squares is closed under multiplication.

If $\alpha = a + bi$ and $\beta = c + di$ then $(a^2 + b^2)(c^2 + d^2) = N(\alpha)N(\beta)$ $= N(\alpha\beta)$ = N(ac - bd + (bc + adi)) $= (ac - bd)^2 + (bc + ad)^2.$

(ii) Show that every prime $\rho \in \mathbb{Z}[i]$ divides some rational prime.

Let

$$\rho\bar{\rho} = N(\rho)$$
$$= n \in \mathbb{N}.$$

Thus ρ divides n. Let

$$n=p_1p_2\dots p_k$$

be the prime factorisation of n.

As ρ is a prime it must divide one of the factors of n. Thus ρ divides a prime.

(iii) Show that (1+i)|(a+bi) if and only if $a \equiv b \mod 2$.

Suppose that (1 + i)|(a + bi). If we take the norm of both sides then we get

$$2 = N(1+i)$$
$$|N(a+bi)$$
$$= a^2 + b^2.$$

As 2 divides $a^2 + b^2$, a and b must have the same parity.

Now suppose that a and b have the same parity. If a and b are even, so that a = 2k and b = 2l then 1 + i divides a + bi = 2(k + li) as 1 + i divides 2 = (1 + i)(1 - i). If a and b are both odd then consider

$$\alpha = (a + bi)$$

= (a - 1) + (b - 1)i + (1 + i)
= β + (1 + i).

As the components of β are even, it follows that 1 + i divides β and so 1 + i divides α .

3. (15pts) Show that the general integral solution of the equation

$$x^2 + y^2 = z^2$$

is of the form

 $x = c(a^2 - b^2)$ y = 2abc and $z = c(a^2 + b^2)$, where $2c \in \mathbb{Z}$.

Consider lines through (-1, 0). These have the form

$$y = m(x+1).$$

If we subsitute this into the equation of the circle $x^2 + y^2 = 1$ we get $x^2 + m^2(x+1)^2 = 1$ so that $(m^2+1)x^2 + 2m^2x + (m^2-1) = 0$. One solution is x = -1 and so it follows that the other is

$$x = \frac{1 - m^2}{1 + m^2}$$
 so that $y = \frac{2m}{1 + m^2}$

As *m* ranges over the rational numbers, this gives all rational solutions of the equation $x^2 + y^2 = 1$, since if *m* is rational then *x* and *y* are rational and if *x* and *y* are rational then so is the slope. If m = a/b then

$$x = \frac{a^2 - b^2}{a^2 + b^2}$$
 and $y = \frac{2ab}{a^2 + b^2}$.

x/z and y/z are solutions of $u^2 + v^2 = 1$ if and only if x, y and z are solutions of $x^2 + y^2 = z^2$. Multiplying through by $c(a^2 + b^2)$ to clear denominators we get the solution

$$x = c(a^2 - b^2)$$
 $y = 2abc$ and $z = c(a^2 + b^2)$

Note that c need not be an integer, since the original x and y need not be in their lowest terms. However as z + x and z - x are integers, it follows that $2c \in \mathbb{Z}$.

4. (10pts) Show that if p is an odd prime and a is coprime to p then the equation

$$x^2 = a$$

has two solutions in the p-adic integers if and only if a is a quadratic residue of p.

If

$$\alpha = a_0 + a_1 p + a_2 p^2 + \dots$$

is a solution of $x^2 = a$ then certainly $a_0^2 \equiv a \mod p$ so that a is a quadratic residue modulo p.

Now suppose that a is a quadratic residue modulo p. Pick a_0 so that $a_0^2 \equiv a \mod p$. We will construct a sequence of integers in the range 0 to p-1 so that

$$\alpha_n = a_0 + a_1 p + \dots + a_n p^n$$

is a solution modulo p^{n+1} by induction on n. Let $f(x) = x^2 - a$. Then f'(x) = 2x. Having chosen $a_0, a_1, \ldots, a_n, a_{n+1} = a_n + tp^{n+1}$. We have to choose t such that

$$f(\alpha_n + tp^{n+1}) \equiv f(\alpha_n) + 2tp^{n+1} \equiv 0 \mod p^{n+2}.$$

Since $f(\alpha_n)$ is divisible by p^{n+1} we can always find integers $0 \le tp - 1$ satisfying this equation. This defines a_{n+1} .

Taking the limit gives a *p*-adic integer. We get two different solutions, one for each choice of a_0 .

5. (10pts) Find the general solution of the equation

$$x^2 - 2y^2 = 1.$$

We just have to find the fundamental solution. One way to find this is to compute the continued fraction expansion of $\sqrt{2}$. $\sqrt{2} = 1 + \sqrt{2} - 1$.

$$\frac{1}{\sqrt{2}-1} = \sqrt{2} + 1$$
$$= 2 + \sqrt{2} - 1.$$

Thus

$$\sqrt{2} = [1; \overline{2}].$$

 $\frac{3}{2}$

The convergents are

and indeed

$$3^2 - 2^2 \cdot 2 = 1.$$

 $\frac{1}{1}$

Thus the fundamental solution is

$$\delta = 3 + 2\sqrt{2}.$$

One can also find this solution by trial and error. It follows that the general solution is

$$\pm (3+2\sqrt{2})^n,$$

where n is an integer.

6. (10pts) If δ is the fundamental solution of the equation

$$x^2 - dy^2 = 1$$

then show that every solution has the form $\pm \delta^n$.

Let α be a non-trivial solution of

$$x^2 - dy^2 = 1.$$

Note that

$$\alpha \quad \bar{\alpha} \quad -\bar{\alpha} \quad \text{and} \quad -\alpha$$

are also solutions. Replacing α by one of these four solutions, we may assume that the coefficients of α are positive and it suffices to find a natural number n such that

$$\alpha = \delta^n.$$

Note that $\delta \leq \alpha$ by minimality of δ . Let n be the largest natural number such that $\delta^n \leq \alpha < \delta^{n+1}$.

Let

$$\beta = \frac{\alpha}{\delta^n}.$$

By assumption

$$1\leq\beta<\delta.$$

We have

$$N(\beta) = N(\alpha)N(\delta^{-n})$$

= 1.

Thus β is also a solution of

$$x^2 - dy^2 = 1.$$

It follows that $\beta = 1$ by minimality of δ . But then

$$\alpha = \delta^n.$$

7. (20pts) (i) If |ps - qr| = 1 then p/q and r/s are adjacent in \mathcal{F}_n for $\max(q, s) \leq n < q + s$

and they are separated by the single element (p+r)/(q+s) in \mathcal{F}_{q+s} .

We may assume that p/q < r/s so that qr - ps = 1. Let

$$f: [0,\infty] \longrightarrow \left[\frac{p}{q}, \frac{r}{s}\right]$$
 given by $f(t) = \frac{p+tr}{q+ts}$.

Then f is a monotonic increasing function, so that f is a bijection. It is clear that f induces a bijection between the rational points of both intervals. Let t = u/v. Then

$$f\left(\frac{u}{v}\right) = \frac{pv + ur}{qv + us}.$$

As

$$q(vp+ur) - p(vq+us) = u(qr-ps) = u$$
$$s(vp+ur) - r(vq+us) = v(ps-qr) = -v$$

it follows that vp + ur is coprime to vq + us, thus f(u/v) is expressed in its lowest terms.

It is then clear that the rational number between p/q and r/s with the smallest denominator is given by u = v = 1.

(ii) If p/q and r/s are adjacent in \mathcal{F}_n for some n then |ps - qr| = 1.

We prove this by induction on n. If n = 1 then q = s = 1 and p and $r = p \pm 1$ are adjacent integers. The result is clear in this case. If we go from n to n+1 we just need to check the result for the integers we just added. If p/q and r/s are adjacent in \mathcal{F}_n then we can only add

$$\frac{p+r}{q+s}$$

between them in \mathcal{F}_n . We have

$$|(p+r)q - (q+s)p| = 1$$
 and $|r(q+s) - s(p+r)| = 1$,

and this completes the induction.

8. (10pts) Find all of the best approximations of 339/62.

We have

$$\xi = \frac{339}{62} \\ = 5 + \frac{29}{62}.$$

Thus $a_0 = 5$ and

$$\xi_1 = \frac{62}{29} \\ = 2 + \frac{4}{29}.$$

Thus $a_2 = 2$ and

$$\xi_2 = \frac{29}{4} \\ = 7 + \frac{1}{4}.$$

Thus $a_2 = 7$ and $a_3 = 4$. It follows that 339

$$\frac{339}{62} = [5; 2, 7, 4]$$

.

The convergents are:

$$\frac{5}{1}$$
 $\frac{11}{2}$ $\frac{82}{15}$ and $\frac{339}{62}$

and these are the best approximations.

9. (10pts) Show that if ξ and η have the same initial partial quotients $a_0, a_1, a_2, \ldots, a_n$ and $\xi < \theta < \eta$ then θ has the same initial partial quotients.

As $\xi < \theta < \eta$, it follows that

$$a_0 = \lfloor \xi \rfloor \leq \lfloor \theta \rfloor \leq \lfloor \eta \rfloor = a_0.$$

Thus

$$a_0 = \llcorner \theta \lrcorner$$
.

Moreover, it then follows that

$$\{\xi\} < \{\theta\} < \{\eta\}.$$

Taking reciprocals

$$\eta_1 < \theta_1 < \xi_1.$$

As the partial quotients of η_1 and ξ_1 are a_1, a_2, \ldots, a_n , we are done by induction on n.

Bonus Challenge Problems 10. (10pts) Describe all solutions of $x^2 - dy^2 = 4$.

See Propopsition 12.5.

11. (10pts) Show that if ξ is irrational then there are infinitely many rational numbers p/q such that

$$\left|\xi - \frac{p}{q}\right| < \frac{1}{\sqrt{5}q^2}.$$

See the proof of Theorem 15.5.

12. (10pts) Show that ξ is a quadratic irrational if and only if its continued fraction is eventually periodic.

See the proof of Theorem 19.1.

13. (10pts) *Prove Legendre's theorem.* See the proof of Theorem 7.1.