15. Farey Sequences

Definition 15.1. Fix a natural number n.

The **Farey sequence** of order n, denoted F_n, is the set of rational numbers p/q with denominator $1 \leq q \leq n$, arranged in increasing order.

F_1 is the sequence of integers, and so on.

Lemma 15.2. If n is a natural number then

$$|F_n \cap [0, 1]| = 1 + \varphi(1) + \varphi(2) + \cdots + \varphi(n).$$

Proof. Indeed an element of

$$F_n \cap (0, 1)$$

has the unique form a/b, where $2 \leq b \leq n$ and a is coprime to b. \qed

Definition 15.3. p/q and $r/s \in F_n$ are **adjacent** if they are successive elements of the sequence F_n.

Definition-Proposition 15.4.

(1) If p/q and r/s are adjacent in F_n for some n then $|ps - qr| = 1$.

(2) If $|ps - qr| = 1$ then p/q and r/s are adjacent in F_n for

$$\text{max}(q, s) \leq n < q + s.$$ and they are separated by the single element

$$\left(\frac{p + r}{q + s}\right) \in F_{q+s},$$

called the **mediant** of p/q and r/s.

Proof. We first prove (2). Suppose that p/q and r/s are two elements of F_n such that $qr - ps = \pm 1$. Possibly switching p/q and r/s we may assume that $r/s > p/q$ and $qr - ps = 1$.

Consider the function

$$f : [0, \infty] \rightarrow [p/q, r/s] \quad \text{given by} \quad f(t) = \frac{p + tr}{q + ts}.$$ As t increases from 0 to ∞, f increases from p/q to r/s. Thus f is a bijection. Moreover it is clear that $f(t)$ is rational if and only if t is rational. Thus we may assume that $t = u/v$, where $u, v > 0$ and $(u, v) = 1$. We have

$$f\left(\frac{u}{v}\right) = \frac{vp + ur}{vq + us}.$$
As
\[q(vp + ur) - p(vq + us) = u(qr - ps) = u \\
 s(vp + ur) - r(vq + us) = v(ps - qr) = -v, \]
it follows that \(vp + ur \) is coprime to \(vq + us \).

It follows that as \(u \) and \(v \) run over all coprime integers, \(f(u/v) \) runs over all rational numbers between \(p/q \) and \(r/s \). Amongst all such choices, \(u = v = 1 \) gives the smallest denominator. \(f(1) \) is the mediant of \(p/q \) and \(r/s \) and for future reference note that
\[|(p + r)q - (q + s)p| = 1 \quad \text{and} \quad |r(q + s) - s(p + r)| = 1. \]
Since \(q + s > \max(q, s) \), (2) holds.

We now turn to (1). We prove this by induction on \(n \). If \(n = 1 \) then \(p/q = a/1 \) and \(r/s = (a + 1)/1 \) so that
\[|ps - qr| = |a \cdot 1 - (a + 1) \cdot 1| = 1. \]
Thus (1) holds when \(n = 1 \).

Now suppose that (1) holds for \(n \). The only elements of \(\mathcal{F}_{n+1} \) not in \(\mathcal{F}_n \) are mediants of elements of \(\mathcal{F}_n \) and we have already checked (1) in this case. Thus (1) holds by induction. \(\square \)

Theorem 15.5 (Hurwitz). Suppose that the real number \(x \) is between two adjacent elements \(r/s \) and \(u/v \) of \(\mathcal{F}_n \).

Then at least one of the three numbers
\[\frac{r}{s}, \frac{u}{v} \quad \text{and} \quad \frac{l}{m} = \frac{(r + u)}{(s + v)} \]
is a solution of the equation
\[\left| x - \frac{p}{q} \right| < \frac{1}{\sqrt{5}q^2}. \]

In particular if \(x \) is irrational then we may find infinitely many such \(p \) and \(q \).

Proof. Possibly relabelling, we may assume that
\[\frac{r}{s} < \frac{l}{m} < \frac{u}{v}. \]
If \(p/q \) is one of these three numbers and \(c \) is a positive real number then let \(I_c(p/q) \) be the interval
\[\left[\frac{p}{q} - \frac{1}{cq^2}, \frac{p}{q} + \frac{1}{cq^2} \right]. \]
We want to find the largest value of \(c \) so that the three intervals \(I_c(r/s) \), \(I_c(l/m) \) and \(I_c(u/v) \) completely cover the interval

\[
I = \left[\frac{r}{s}, \frac{u}{v} \right].
\]

Note that \(I_c(r/s) \) intersects \(I_c(u/v) \) if

\[
\frac{r}{s} + \frac{1}{cs^2} \geq \frac{u}{v} - \frac{1}{cv^2}.
\]

Rearranging, this gives

\[
\frac{1}{c} \left(\frac{1}{s^2} + \frac{1}{v^2} \right) \geq \frac{u}{v} - \frac{r}{s} = \frac{1}{vs},
\]

so that

\[
c \leq \frac{v}{s} + \frac{s}{v}.
\]

If we let

\[
f(t) = t + \frac{1}{t}
\]

then

\[
c \leq f\left(\frac{v}{s}\right).
\]

By a similar analysis, \(I_c(r/s) \) and \(I_c(l/m) \) intersect if

\[
c \leq f\left(\frac{m}{s}\right) = f\left(1 + \frac{v}{s}\right).
\]

Consider the problem of trying to cover the left-hand portion

\[
\left[\frac{r}{s}, \frac{l}{m} \right]
\]

of the interval \(I \) by the union \(I_c \) of the three intervals. \(I \) is covered by \(I_c \) if either of these intervals intersect, that is, we are done if

\[
c \leq \max \left(f\left(\frac{v}{s}\right), f\left(1 + \frac{v}{s}\right) \right).
\]

So we are definitely done if

\[
c \leq \min_{t > 0} \max \left(f(t), f(1 + t) \right)
\]

since we are taking a minimum over values that include

\[
t = \frac{v}{s}.
\]

The minimum occurs for that value \(t_0 \) of \(t \) for which \(f(t) = f(1 + t) \). This gives the equation

\[
t + \frac{1}{t} = t + 1 + \frac{1}{1 + t}.
\]
Cancelling the \(t \) and cross-multiplying, it follows that
\[
1 + t = t(1 + t) + t.
\]
Thus
\[
t^2 + t - 1 = 0.
\]
The positive root of this equation is
\[
t_0 = \frac{\sqrt{5} - 1}{2}.
\]
It follows that
\[
c_0 = \sqrt{5}.
\]
By symmetry the right-hand portion
\[
\left[\frac{l}{m}, \frac{u}{v} \right]
\]
is also covered if \(c \leq \sqrt{5} \).

Thus \(I \) belongs to the union \(I_c \) of the intervals if \(c \leq \sqrt{5} \). This shows we get an inequality
\[
\left| x - \frac{p}{q} \right| \leq \frac{1}{\sqrt{5}q^2}.
\]
As \(\sqrt{5} \) is irrational, we must in fact have strict inequality.

If \(x \) is irrational the interval determined by adjacent points of \(F_n \) to which \(x \) belongs must shrink down to \(x \), on both sides of \(x \). Thus we get infinitely many \(p/q \) this way.
\[\square\]