FIRST MIDTERM MATH 104C, UCSD, SPRING 18

You have 80 minutes.

There are 5 problems, and the total number of points is 60. Show all your work. *Please make* your work as clear and easy to follow as possible.

Name:_____

Signature:_____

Student ID #:_____

Problem	Points	Score
1	15	
2	15	
3	10	
4	10	
5	10	
6	10	
7	10	
Total	60	

1. (15pts) (i) Give the definition of a primitive representation as a sum of two squares.

The representation $n = a^2 + b^2$ as a sum of two squares is primitive if (a, b) = 1.

(ii) Give the definition of an involution.

A function $f: S \longrightarrow S$ is an involution if it is its own inverse.

(iii) Give the definition of the norm of a Gaussian integer.

If $\alpha = a + ib$ the norm of α is

 $\alpha \bar{\alpha} = a^2 + b^2.$

2. (15pts) (i) If a, b, c and d are real numbers then show that $(a^2 + b^2)(c^2 + d^2) = (ac + bd)^2 + (ad - bc)^2.$

If we expand the LHS we get

$$(a^{2} + b^{2})(c^{2} + d^{2}) = a^{2}c^{2} + a^{2}d^{2} + b^{2}c^{2} + b^{2}d^{2}$$

which is the same as the expansion of the RHS

$$(ac+bd)^{2} + (ad-bc)^{2} = a^{2}c^{2} + 2abcd + b^{2}d^{2} + a^{2}d^{2} - 2abcd + b^{2}c^{2}$$
$$= a^{2}c^{2} + b^{2}d^{2} + a^{2}d^{2} + b^{2}c^{2}.$$

(ii) If n has a primitive representation as a sum of two squares and p|n then show that -1 is a quadratic residue of p.

If $a^2 + b^2 = n$ and (a, b) = 1 then $a^2 + b^2 \equiv 0 \mod p$. If p|b then p|a, a contradiction. Thus b is invertible modulo p and so $(ac)^2 = -1 \mod p$, where c is the inverse of b. Thus -1 is a quadratic residue of p.

(iii) If n is a sum of two squares and $p \equiv 3 \mod 4$ then show that $n = p^{2k}m$ where m is coprime to p.

Suppose that $n = a^2 + b^2$. Let d = (a, b). Then $a = da_1$, $b = db_1$ and d^2 divides n, so that $n = d^2m$. As $a_1^2 + b_1^2 = m$ is a primitive representation of m and -1 is not a quadratic residue of p, it follows that m is coprime to p.

If $d = p^k e$, where e is coprime to p then $n = p^{2k}m$.

3. (10pts) If a is not divisible by m and $1 < \lambda < m$ then show that we can find $1 \le x < \lambda$ and $1 \le |y| \le m/\lambda$ such that $ax \equiv y \mod m$.

We can either apply Brauer-Reynolds or prove the result directly. We prove the result directly.

We first prove that we can find $|x| < \lambda$ and $|y| \le m/\lambda$ such that $ax \equiv y \mod m$, where x and y are not both zero.

Consider the possible values of ax - y modulo m. There are m different possible values. Suppose that $0 \le x < \lambda$ and $0 \le y \le m/\lambda$. Let

$$\mu = \begin{cases} \llcorner \lambda \lrcorner + 1 & \text{if } \lambda \text{ is not an integer} \\ \lambda & \text{if } \lambda \text{ is an integer.} \end{cases}$$

Then x can take on μ different values and y can take on $\lfloor m/\lambda \rfloor + 1$ possible different values. As

$$\mu + \lfloor m/\lambda \rfloor + 1 > m,$$

it follows that there are two vectors (x_i, y_i) such that

 $ax_1 - y_1 \equiv ax_2 - 2y_2 \mod m.$

The difference $(x = x_1 - x_2, y = y_1 - y_2)$ has the property that

$$ax \equiv y \mod m$$
,

where x and y are not both zero. But if one is zero then the other is zero and so neither is zero. Therefore we have $1 \leq |x| < \lambda$ and $1 \leq |y| \leq m/\lambda$. If x < 0 then replacing (x, y) by (-x, -y) gives the result. 4. (10pts) If p is an odd prime, $1 \leq g \leq p$, $h = \lfloor p/g \rfloor$ and r is a quadratic residue of p then show that one of the numbers 1^2 , 2^2 , 3^3 , \ldots , h^2 is congruent to one of the numbers r, 2^2r , \ldots , $(g-1)^2r$, modulo p.

By assumption there is a number a such that $a^2 \equiv r \mod p$. By 3 we can find x and y such that $ax \equiv y \mod p$, where $1 \leq x \leq g$ and $1 \leq |y| \leq p/g$. First note that if the integer $|y| \leq p/g$ then in fact $|y| \leq h$. Then

$$y^{2} = (-y)^{2}$$
$$\equiv a^{2}x^{2}$$
$$\equiv rx^{2} \mod$$

On the other hand $1 \le x \le g - 1$ and either $1 \le y \le h$ or $1 \le -y \le h$.

p.

5. (10pts) Show that every positive prime p > 2 of which -3 is a quadratic residue can be represented in the form $x^2 + 3y^2$.

By assumption we may find a such that

$$a^2 \equiv -3 \mod p.$$

By 3 we may find x and y such that

$$x \equiv ay \mod p$$
,

where $1 \le |x| \le \sqrt{p}$ and $1 \le y < \sqrt{p}$. As p is prime, we must have $1 \le |x| < \sqrt{p}$. Note that

$$x^2 + 3y^2 \equiv 0 \mod p.$$

Possibly replacing x by -x we have $1 \le y < \sqrt{p}$. Thus

$$x^2 + 3y^2 = Ap,$$

where A = 1, 2 or 3. If A = 1 then we are done. If A = 2 then we have

$$x^2 + 3y^2 = 2p.$$

x and y must have the same parity. If x and y are both even then the LHS is divisible by 4, a contradiction. If x and y are both odd then the LHS is still divisible by 4, a contradiction. Thus the case A = 2 is not possible.

Suppose A = 3. Note that if p = 3 we may take x = 0 and y = 1. Thus we may assume that p > 3. We have

$$x^2 + 3y^2 = 3p$$

It follows that x is divisible by 3. Suppose that x = 3z. Then

$$9z^2 + 3y^2 = 3p.$$

Dividing both sides by 3 we get

$$3z^2 + y^2 = p.$$

Bonus Challenge Problems 6. (10pts) Derive an expression for $p_2(n)$.

See lecture 2.

7. (10pts) Show that every natural number is a sum of four squares.

See lecture 5.