FIRST MIDTERM MATH 104C, UCSD, SPRING 18

You have 80 minutes.
There are 5 problems, and the total number of points is 60. Show all your work. Please make your work as clear and easy to follow as possible.

Name: \qquad
Signature: \qquad
Student ID \#: \qquad

Problem	Points	Score
1	15	
2	15	
3	10	
4	10	
5	10	
6	10	
7	10	
Total	60	

1. (15pts) (i) Give the definition of a primitive representation as a sum of two squares.

The representation $n=a^{2}+b^{2}$ as a sum of two squares is primitive if $(a, b)=1$.
(ii) Give the definition of an involution.

A function $f: S \longrightarrow S$ is an involution if it is its own inverse.
(iii) Give the definition of the norm of a Gaussian integer.

If $\alpha=a+i b$ the norm of α is

$$
\alpha \bar{\alpha}=a^{2}+b^{2} .
$$

2. (15pts) (i) If a, b, c and d are real numbers then show that

$$
\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=(a c+b d)^{2}+(a d-b c)^{2} .
$$

If we expand the LHS we get

$$
\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=a^{2} c^{2}+a^{2} d^{2}+b^{2} c^{2}+b^{2} d^{2}
$$

which is the same as the expansion of the RHS

$$
\begin{aligned}
(a c+b d)^{2}+(a d-b c)^{2} & =a^{2} c^{2}+2 a b c d+b^{2} d^{2}+a^{2} d^{2}-2 a b c d+b^{2} c^{2} \\
& =a^{2} c^{2}+b^{2} d^{2}+a^{2} d^{2}+b^{2} c^{2}
\end{aligned}
$$

(ii) If n has a primitive representation as a sum of two squares and $p \mid n$ then show that -1 is a quadratic residue of p.

If $a^{2}+b^{2}=n$ and $(a, b)=1$ then $a^{2}+b^{2} \equiv 0 \bmod p$. If $p \mid b$ then $p \mid a$, a contradiction. Thus b is invertible modulo p and so $(a c)^{2}=-1$ $\bmod p$, where c is the inverse of b. Thus -1 is a quadratic residue of p.
(iii) If n is a sum of two squares and $p \equiv 3 \bmod 4$ then show that $n=p^{2 k} m$ where m is coprime to p.

Suppose that $n=a^{2}+b^{2}$. Let $d=(a, b)$. Then $a=d a_{1}, b=d b_{1}$ and d^{2} divides n, so that $n=d^{2} m$. As $a_{1}^{2}+b_{1}^{2}=m$ is a primitive representation of m and -1 is not a quadratic residue of p, it follows that m is coprime to p.
If $d=p^{k} e$, where e is coprime to p then $n=p^{2 k} m$.
3. (10pts) If a is not divisible by m and $1<\lambda<m$ then show that we can find $1 \leq x<\lambda$ and $1 \leq|y| \leq m / \lambda$ such that $a x \equiv y \bmod m$.

We can either apply Brauer-Reynolds or prove the result directly. We prove the result directly.
We first prove that we can find $|x|<\lambda$ and $|y| \leq m / \lambda$ such that $a x \equiv y$ $\bmod m$, where x and y are not both zero.
Consider the possible values of $a x-y$ modulo m. There are m different possible values. Suppose that $0 \leq x<\lambda$ and $0 \leq y \leq m / \lambda$. Let

$$
\mu= \begin{cases}\llcorner\lambda\lrcorner+1 & \text { if } \lambda \text { is not an integer } \\ \lambda & \text { if } \lambda \text { is an integer. }\end{cases}
$$

Then x can take on μ different values and y can take on $\llcorner m / \lambda\lrcorner+1$ possible different values. As

$$
\mu+\llcorner m / \lambda\lrcorner+1>m
$$

it follows that there are two vectors $\left(x_{i}, y_{i}\right)$ such that

$$
a x_{1}-y_{1} \equiv a x_{2}-2 y_{2} \quad \bmod m
$$

The difference $\left(x=x_{1}-x_{2}, y=y_{1}-y_{2}\right)$ has the property that

$$
a x \equiv y \quad \bmod m
$$

where x and y are not both zero. But if one is zero then the other is zero and so neither is zero. Therefore we have $1 \leq|x|<\lambda$ and $1 \leq|y| \leq m / \lambda$. If $x<0$ then replacing (x, y) by $(-x,-y)$ gives the result.
4. (10pts) If p is an odd prime, $1 \leq g \leq p, h=\llcorner p / g\lrcorner$ and r is a quadratic residue of p then show that one of the numbers $1^{2}, 2^{2}, 3^{3}$, \ldots, h^{2} is congruent to one of the numbers $r, 2^{2} r, \ldots,(g-1)^{2} r$, modulo p.

By assumption there is a number a such that $a^{2} \equiv r \bmod p$. By 3 we can find x and y such that $a x \equiv y$ modulo p, where $1 \leq x \leq g$ and $1 \leq|y| \leq p / g$. First note that if the integer $|y| \leq p / g$ then in fact $|y| \leq h$.
Then

$$
\begin{aligned}
y^{2} & =(-y)^{2} \\
& \equiv a^{2} x^{2} \\
& \equiv r x^{2} \quad \bmod p .
\end{aligned}
$$

On the other hand $1 \leq x \leq g-1$ and either $1 \leq y \leq h$ or $1 \leq-y \leq h$.
5. (10pts) Show that every positive prime $p>2$ of which -3 is a quadratic residue can be represented in the form $x^{2}+3 y^{2}$.

By assumption we may find a such that

$$
a^{2} \equiv-3 \quad \bmod p
$$

By 3 we may find x and y such that

$$
x \equiv a y \quad \bmod p,
$$

where $1 \leq|x| \leq \sqrt{p}$ and $1 \leq y<\sqrt{p}$. As p is prime, we must have $1 \leq|x|<\sqrt{p}$. Note that

$$
x^{2}+3 y^{2} \equiv 0 \quad \bmod p .
$$

Possibly replacing x by $-x$ we have $1 \leq y<\sqrt{p}$. Thus

$$
x^{2}+3 y^{2}=A p
$$

where $A=1,2$ or 3 . If $A=1$ then we are done.
If $A=2$ then we have

$$
x^{2}+3 y^{2}=2 p .
$$

x and y must have the same parity. If x and y are both even then the LHS is divisible by 4 , a contradiction. If x and y are both odd then the LHS is still divisible by 4 , a contradiction. Thus the case $A=2$ is not possible.
Suppose $A=3$. Note that if $p=3$ we may take $x=0$ and $y=1$. Thus we may assume that $p>3$. We have

$$
x^{2}+3 y^{2}=3 p
$$

It follows that x is divisible by 3 . Suppose that $x=3 z$. Then

$$
9 z^{2}+3 y^{2}=3 p
$$

Dividing both sides by 3 we get

$$
3 z^{2}+y^{2}=p
$$

Bonus Challenge Problems

6. (10pts) Derive an expression for $p_{2}(n)$.

See lecture 2.
7. (10pts) Show that every natural number is a sum of four squares.

See lecture 5.

